• Title/Summary/Keyword: Contrast-enhanced magnetic resonance imaging

Search Result 196, Processing Time 0.024 seconds

Ramsay Hunt Syndrome Complicated by Meningoencephalitis and Radiologic findings: a Rare Case Report

  • Lee, Youdae;Lee, Donghoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.65-69
    • /
    • 2019
  • Ramsay Hunt syndrome with the complication of encephalitis or meningoencephalitis is rarely reported and uncommon in immunocompetent patients. The radiological manifestations of such cases usually involve the cerebellum and brainstem or exhibit the absence of any abnormality. We report a case of a 78-year-old immunocompetent man hospitalized with Ramsay Hunt syndrome, who later developed meningoencephalitis. The cerebrospinal fluid-study excluded other causes of meningoencephalitis, and the clinical diagnosis indicated varicella zoster virus meningoencephalitis. Magnetic resonance imaging revealed increased signal intensities in the bilateral temporal lobe, midbrain, and pons on T2-weighted imaging, and T2 fluid attenuated inversion recovery and contralateral asymmetric pachymeningeal enhancement. Contrast-enhanced T1-weighted imaging revealed ipsilateral facial nerve enhancement.

Leak Sign on Dynamic-Susceptibility-Contrast Magnetic Resonance Imaging in Acute Intracerebral Hemorrhage

  • Park, Ji Kang;Hong, Dae Young;Jin, Sun Tak;Lee, Dong-Woo;Pyun, Hae Wook
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.3
    • /
    • pp.154-161
    • /
    • 2020
  • Purpose: A CT angiography spot sign (CTA-spot) is a significant predictor of the early expansion of an intracerebral hemorrhage (ICH-Ex). Dynamic-susceptibility-contrast magnetic resonance imaging (DSC-MRI) can track the real-time leaking of contrast agents. It may be able to indicate active bleeding, like a CTA-spot. Materials and Methods: From September 2014 to February 2017, we did non-contrast CT, CTA, and DSC-MRI examinations of seven patients with acute ICH. We investigated the time from symptom onset to the first contrast-enhanced imaging. We evaluated the time course of the contrast leak within the ICH at the source image of the DSC-MRI and the volume change of ICH between non-contrast CT and DSC-MRI. We compared the number of slices showing CTA-spots and DSC-MRI leaks. Results: The CTA-spot and DSC-MRI leak-sign were present in four patients, and two patients among those showed ICH-Ex. The time from the symptom onset to CTA or DSC-MRI was shorter for those with a DSC-MRI leak or CTA-spot than for three patients without either (70-130 minutes vs. 135-270 minutes). The leak-sign began earlier, lasted longer, and spread to more slices in the patients with ICH-Ex than in those without ICH-Ex. The number of slices of the DSC-MRI leak and the number of the CTA-spot were well correlated. Conclusion: DSC-MRI can demonstrate the leakage of GBCA within hyperacute ICH, showing the good contrast between hematoma and contrast. The DSC-MRI leakage sign could be related to the hematoma expansion in patients with ICH.

Comparison Study of Image Performance with Contrast Agent Contents for Brain Magnetic Resonance Imaging

  • Lee, Youngjin;Choi, Min Hyeok;Goh, Hee Jin;Han, Dong-Kyoon
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.281-285
    • /
    • 2016
  • The purpose of study was to evaluate SNR and CNR with different contrast agent contents (1.0 mmol/mL gadobutrol and 0.5 mmol/mL gadoterate meglumine) for spin echo (SE) and 3-dimension contrast-enhanced fast field echo (3D CE-FFE) pulse sequences. In this study, we compared the SNR and the CNR between 0.5 mmol/mL gadoterate meglumine and 1.0 mmol/mL gadobutrol according to the concentration of contrast agent in brain MRI. When we compared between SE and 3D CE-FFE pulse sequences, the higher SNR and CNR using 3D CE-FFE pulse sequence can be acquire regardless of contrast agent contents. Also, a statistically significant difference was found for SNR and CNR between all protocols. In conclusion, our results demonstrated that the SNR and CNR have not risen proportionately with contrast agent contents. We hope that these results presented in this paper will contribute to decide contrast agent contents for brain MRI.

Fast MRI in Acute Ischemic Stroke: Applications of MRI Acceleration Techniques for MR-Based Comprehensive Stroke Imaging

  • You, Sung-Hye;Kim, Byungjun;Kim, Bo Kyu;Park, Sang Eun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.81-92
    • /
    • 2021
  • The role of neuroimaging in patients with acute ischemic stroke has been gradually increasing. The ultimate goal of stroke imaging is to make a streamlined imaging workflow for safe and efficient treatment based on optimized patient selection. In the era of multimodal comprehensive imaging in strokes, imaging based on computed tomography (CT) has been preferred for use in acute ischemic stroke, because, despite the unique strengths of magnetic resonance imaging (MRI), MRI has a longer scan duration than does CT-based imaging. However, recent improvements, such as multicoil technology and novel MRI acceleration techniques, including parallel imaging, simultaneous multi-section imaging, and compressed sensing, highlight the potential of comprehensive MR-based imaging for strokes. In this review, we discuss the role of stroke imaging in acute ischemic stroke management, as well as the strengths and limitations of MR-based imaging. Given these concepts, we review the current MR acceleration techniques that could be applied to stroke imaging and provide an overview of the previous research on each essential sequence: diffusion-weighted imaging, gradient-echo, fluid-attenuated inversion recovery, contrast-enhanced MR angiography, and MR perfusion imaging.

Ductal Carcinoma in situ with Multicystic Changes in a Patient with Interstitial Mammoplasty via Paraffin Injection: MRI and Pathological Findings

  • Park, Jiyoon;Woo, Ok Hee;Kim, Chungyeul;Cho, Kyu Ran;Seo, Bo Kyoung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.127-130
    • /
    • 2015
  • Direct injection of foreign material, such as liquid paraffin and silicone, into the breast can induce a foreign body granulomatous reaction and fibrosis, resulting in hard, nodular breast masses and architectural distortion that can mimic neoplasm. Conventional methods, including physical examination, mammography, and ultrasonography are of little use to differentiate between foreign body-induced mastopathy and breast cancer. In patients with foreign body injection such as breast augmentation, dynamic contrast enhanced MR imaging is an excellent imaging modality. Here, the authors report the MR imaging and pathological findings of ductal carcinoma in situ (DCIS) with multicystic changes in a 41-year-old woman with a previous history of interstitial mammoplasty by paraffin injection.

Noninvasive Biomarker for Predicting Treatment Response to Concurrent Chemoradiotherapy in Patients with Hepatocellular Carcinoma

  • Chung, Yong Eun;Park, Jun Yong;Choi, Jin-Young;Kim, Myeong-Jin;Park, Mi-suk;Seong, Jinsil
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.4
    • /
    • pp.351-360
    • /
    • 2019
  • Purpose: To investigate noninvasive biomarkers for predicting treatment response in patients with locally advanced HCC who underwent concurrent chemoradiotherapy (CCRTx). Materials and Methods: Thirty patients (55.5 ± 10.2 years old, M:F = 24:6) who underwent CCRTx due to advanced HCC were enrolled. Contrast-enhanced US (CEUS) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) were obtained before and immediately after CCRTx. The third CEUS was obtained at one month after CCRTx was completed. Response was assessed at three months after CCRTx based on RECIST 1.1. Quantitative imaging biomarkers measured with CEUS and MRI were compared between groups. A cutoff value was calculated with ROC analysis. Overall survival (OS) was compared by the Breslow method. Results: Twenty-five patients were categorized into the non-progression group and five patients were categorized into the progression group. Peak enhancement of the first CEUS before CCRTx (PE1) was significantly lower in the non-progression group (median, 18.6%; IQR, 20.9%) than that in the progression group (median, 59.1%; IQR, 13.5%; P = 0.002). There was no significant difference in other quantitative biomarkers between the two groups. On ROC analysis, with a cutoff value of 42.6% in PE1, the non-progression group was diagnosed with a sensitivity of 90.9% and a specificity of 100%. OS was also significantly longer in patients with PE1 < 42.6% (P = 0.014). Conclusion: Early treatment response and OS could be predicted by PE on CEUS before CCRTx in patients with HCC.

Contrast-enhanced Bias-corrected Distance-regularized Level Set Method Applied to Hippocampus Segmentation

  • Selma, Tisa;Madusanka, Nuwan;Kim, Tae-Hyung;Kim, Young-Hoon;Mun, Chi-Woong;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1236-1247
    • /
    • 2016
  • Recently, the level set has become a popular method in many research fields. The main reason is that it can be modified into many variants. One such case is our proposed method. We describe a contrast-enhancement method to segment the hippocampal region from the background. However, the hippocampus region has quite similar intensities to the neighboring pixel intensities. In addition, to handle the inhomogeneous intensities of the hippocampus, we used a bias correction before hippocampal segmentation. Thus, we developed a contrast-enhanced bias-corrected distance-regularized level set (CBDLS) to segment the hippocampus in magnetic resonance imaging (MRI). It shows better performance than the distance-regularized level set evolution (DLS) and bias-corrected distance-regularized level set (BDLS) methods in 33 MRI images of one normal patient. Segmentation after contrast enhancement and bias correction can be done more accurately than segmentation while not using a bias-correction method and without contrast enhancement.

Temporal Evolution of a Chronic Expanding Organizing Hematoma on MRI, Including Functional MR Imaging Techniques: a Case Report

  • Lee, Jeonghyun;Lee, Taebum;Oh, Eunsun;Yoon, Young Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • Chronic expanding organizing hematoma (CEH) occasionally mimics a soft tissue tumor on MRI, which becomes more problematic in patients with a history of surgical resection for musculoskeletal malignancy. Herein, we present a case of CEH which we were able to differentiate from recurrent tumor through MRI follow-up, including diffusion-weighted imaging (DWI) and dynamic contrast enhanced (DCE) imaging. A 66-year-old male visited our institution under suspicion of recurrent leiomyosarcoma of the thigh, 19 months after surgery and radiation therapy. Due to inconclusive results, three US-guided biopsies and 6 MRI examinations were performed over 2 years. In the end, we could diagnose a CEH using conventional and functional MRI techniques, and it was histopathologically confirmed after surgical resection. A CEH may occur remotely after an initiating event, and it may persist and expand over several years. Functional MR sequences, in addition to conventional sequences, are helpful in differentiating CEH from malignant neoplasms.