• Title/Summary/Keyword: Contrast-enhanced CT

Search Result 174, Processing Time 0.026 seconds

Intensity Modulated Whole Pelvic Radiotherapy in Patients with Cervix Cancer: Analysis of Acute Toxicity (자궁경부암 환자에서 전골반 강도변조방사선치료에 의한 급성부작용)

  • Choi, Young-Min;Lee, Hyung-Sik;Hur, Won-Joo;Cha, Moon-Seok;Kim, Hyun-Ho
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.248-254
    • /
    • 2006
  • $\underline{Purpose}$: To evaluate acute toxicities in cervix cancer patients receiving intensity modulated whole pelvic radiation therapy (IM-WPRT). $\underline{Materials\;and\;Methods}$: Between August 2004 and April 2006, 17 patients who underwent IM-WPRT were analysed. An intravenous contrast agent was used for radiotherapy planning computed tomography (CT). The central clinical target volume (CTV) included the primary tumor, uterus, vagina, and parametrium. The nodal CTV was defined as the lymph nodes larger than 1 cm seen on CT and the contrased-enhanced pelvic vessels. The planning target volume (PTV) was the 1-cm expanded volume around the central CTV, except for a 5-mm expansion from the posterior vagina, and the nodal PTV was defined as the nodal CTV plus a 1.5 cm margin. IM-WPRT was prescribed to deliver a dose of 50 Gy to more than 95% of the PTV. Acute toxicity was assessed with common toxicity criteria up to 60 days after radiotherapy. $\underline{Results}$: Grade 1 nausea developed in 10 (58.9%) patients, and grade 1 and 2 diarrhea developed in 11 (64.7%) and 1 (5.9%) patients, respectively. No grade 3 or higher gastrointestinal toxicity was seen. Leukopenia, anemia, and thrombocytopenia occurred in 15 (88.2%). 7 (41.2%), and 2 (11.8%) patients, respectively, as hematologic toxicities. Grade 3 leukopenia developed in 2 patients who were treated with concurrent chemoradiotherapy. $\underline{Conclusion}$: IM-WPRT can be a useful treatment for cervix cancer patients with decreased severe acute toxicities and a resultant improved compliance to whole pelvic irradiation.

LI-RADS Treatment Response versus Modified RECIST for Diagnosing Viable Hepatocellular Carcinoma after Locoregional Therapy: A Systematic Review and Meta-Analysis of Comparative Studies (국소 치료 후 잔존 간세포암의 진단을 위한 LI-RADS 치료 반응 알고리즘과 Modified RECIST 기준 간 비교: 비교 연구를 대상으로 한 체계적 문헌고찰과 메타분석)

  • Dong Hwan Kim;Bohyun Kim;Joon-Il Choi;Soon Nam Oh;Sung Eun Rha
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.2
    • /
    • pp.331-343
    • /
    • 2022
  • Purpose To systematically compare the performance of liver imaging reporting and data system treatment response (LR-TR) with the modified Response Evaluation Criteria in Solid Tumors (mRECIST) for diagnosing viable hepatocellular carcinoma (HCC) treated with locoregional therapy (LRT). Materials and Methods Original studies of intra-individual comparisons between the diagnostic performance of LR-TR and mRECIST using dynamic contrast-enhanced CT or MRI were searched in MEDLINE and EMBASE, up to August 25, 2021. The reference standard for tumor viability was surgical pathology. The meta-analytic pooled sensitivity and specificity of the viable category using each criterion were calculated using a bivariate random-effects model and compared using bivariate meta-regression. Results For five eligible studies (430 patients with 631 treated observations), the pooled per-lesion sensitivities and specificities were 58% (95% confidence interval [CI], 45%-70%) and 93% (95% CI, 88%-96%) for the LR-TR viable category and 56% (95% CI, 42%-69%) and 86% (95% CI, 72%-94%) for the mRECIST viable category, respectively. The LR-TR viable category provided significantly higher pooled specificity (p < 0.01) than the mRECIST but comparable pooled sensitivity (p = 0.53). Conclusion The LR-TR algorithm demonstrated better specificity than mRECIST, without a significant difference in sensitivity for the diagnosis of pathologically viable HCC after LRT.

Comparison of Stereotactic Radiosurgery and Whole Brain Radiotherapy in Patients with Four or More Brain Metastases (4개 이상의 다발성 전이성 뇌종양의 정위적 방사선수술과 전뇌 방사선조사의 비교)

  • Kim, Cheol-Jin;Baek, Mi-Young;Park, Sung-Kwang;Ahn, Ki-Jung;Cho, Heung-Lae
    • Radiation Oncology Journal
    • /
    • v.27 no.3
    • /
    • pp.163-168
    • /
    • 2009
  • Purpose: This study was a retrospective evaluation of the efficacy of stereotactic radiosurgery (SRS) in patients with >4 metastases to the brain. Materials and Methods: Between January 2004 and December 2006, 68 patients with $\geq$4 multiple brain metastases were included and reviewed retrospectively. Twenty-nine patients received SRS and 39 patients received whole brain radiotherapy (WBRT). Patients with small cell lung cancers and melanomas were excluded. The primary lesions were non-small cell lung cancer (69.0%) and breast cancer (13.8%) in the SRS group and non-small cell lung cancer (64.1%), breast cancer (15.4%), colorectal cancer (12.8%), esophageal cancer (5.1%) in the WBRT group. SRS involved gamma-knife radiosurgery and delivered 10~20 Gy (median, 16 Gy) in a single fraction with a 50% marginal dose. WBRT was delivered daily in 3 Gy fractions, for a total of 30 Gy. After completion of treatment, a follow-up brain MRI or a contrast-enhanced brain CT was reviewed. The overall survival and intracranial progression-free survival were compared in each group. Results: The median follow-up period was 5 months (range, 2~19 months) in the SRS group and 6 months (range, 4~23 months) in the WBRT group. The mean number of metastatic lesions in the SRS and WBRT groups was 6 and 5, respectively. The intracranial progression-free survival and overall survival in the SRS group was 5.1 and 5.6 months, respectively, in comparison to 6.1 and 7.2 months, respectively, in the WBRT group. Conclusion: SRS was less effective than WBRT in the treatment of patients with >4 metastases to the brain.

Radiation Dose-escalation Trial for Glioblastomas with 3D-conformal Radiotherapy (3차원 입체조형치료에 의한 아교모세포종의 방사선 선량증가 연구)

  • Cho, Jae-Ho;Lee, Chang-Geol;Kim, Kyoung-Ju;Bak, Jin-Ho;Lee, Se-Byeoung;Cho, Sam-Ju;Shim, Su-Jung;Yoon, Dok-Hyun;Chang, Jong-Hee;Kim, Tae-Gon;Kim, Dong-Suk;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.237-246
    • /
    • 2004
  • Purpose: To investigate the effects of radiation dose-escalation on the treatment outcome, complications and the other prognostic variables for glioblastoma patients treated with 3D-conformal radiotherapy (3D-CRT). Materials and Methods: Between Jan 1997 and July 2002, a total of 75 patients with histologically proven diagnosis of glioblastoma were analyzed. The patients who had a Karnofsky Performance Score (KPS) of 60 or higher, and received at least 50 Gy of radiation to the tumor bed were eligible. All the patients were divided into two arms; Arm 1, the high-dose group was enrolled prospectively, and Arm 2, the low-dose group served as a retrospective control. Arm 1 patients received $63\~70$ Gy (Median 66 Gy, fraction size $1.8\~2$ Gy) with 3D-conformal radiotherapy, and Arm 2 received 59.4 Gy or less (Median 59.4 Gy, fraction size 1.8 Gy) with 2D-conventional radiotherapy. The Gross Tumor Volume (GTV) was defined by the surgical margin and the residual gross tumor on a contrast enhanced MRI. Surrounding edema was not included in the Clinical Target Volume (CTV) in Arm 1, so as to reduce the risk of late radiation associated complications; whereas as in Arm 2 it was included. The overall survival and progression free survival times were calculated from the date of surgery using the Kaplan-Meier method. The time to progression was measured with serial neurologic examinations and MRI or CT scans after RT completion. Acute and late toxicities were evaluated using the Radiation Therapy Oncology Group neurotoxicity scores. Results: During the relatively short follow up period of 14 months, the median overall survival and progression free survival times were $15{\pm}1.65$ and $11{\pm}0.95$ months, respectively. The was a significantly longer survival time for the Arm 1 patients compared to those in Arm 2 (p=0.028). For Arm 1 patients, the median survival and progression free survival times were $21{\pm}5.03$ and $12{\pm}1.59$ months, respectively, while for Arm 2 patients they were $14{\pm}0.94$ and $10{\pm}1.63$ months, respectively. Especially in terms of the 2-year survival rate, the high-dose group showed a much better survival time than the low-dose group; $44.7\%$ versus $19.2\%$. Upon univariate analyses, age, performance status, location of tumor, extent of surgery, tumor volume and radiation dose group were significant factors for survival. Multivariate analyses confirmed that the impact of radiation dose on survival was independent of age, performance status, extent of surgery and target volume. During the follow-up period, complications related directly with radiation, such as radionecrosis, has not been identified. Conclusion: Using 3D-conformal radiotherapy, which is able to reduce the radiation dose to normal tissues compared to 2D-conventional treatment, up to 70 Gy of radiation could be delivered to the GTV without significant toxicity. As an approach to intensify local treatment, the radiation dose escalation through 3D-CRT can be expected to increase the overall and progression free survival times for patients with glioblastomas.