• 제목/요약/키워드: Contrast - to - Noise Ratio

검색결과 295건 처리시간 0.026초

Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise

  • Joo Hee Kim;Hyun Jung Yoon;Eunju Lee;Injoong Kim;Yoon Ki Cha;So Hyeon Bak
    • Korean Journal of Radiology
    • /
    • 제22권1호
    • /
    • pp.131-138
    • /
    • 2021
  • Objective: Iterative reconstruction degrades image quality. Thus, further advances in image reconstruction are necessary to overcome some limitations of this technique in low-dose computed tomography (LDCT) scan of the chest. Deep-learning image reconstruction (DLIR) is a new method used to reduce dose while maintaining image quality. The purposes of this study was to evaluate image quality and noise of LDCT scan images reconstructed with DLIR and compare with those of images reconstructed with the adaptive statistical iterative reconstruction-Veo at a level of 30% (ASiR-V 30%). Materials and Methods: This retrospective study included 58 patients who underwent LDCT scan for lung cancer screening. Datasets were reconstructed with ASiR-V 30% and DLIR at medium and high levels (DLIR-M and DLIR-H, respectively). The objective image signal and noise, which represented mean attenuation value and standard deviation in Hounsfield units for the lungs, mediastinum, liver, and background air, and subjective image contrast, image noise, and conspicuity of structures were evaluated. The differences between CT scan images subjected to ASiR-V 30%, DLIR-M, and DLIR-H were evaluated. Results: Based on the objective analysis, the image signals did not significantly differ among ASiR-V 30%, DLIR-M, and DLIR-H (p = 0.949, 0.737, 0.366, and 0.358 in the lungs, mediastinum, liver, and background air, respectively). However, the noise was significantly lower in DLIR-M and DLIR-H than in ASiR-V 30% (all p < 0.001). DLIR had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than ASiR-V 30% (p = 0.027, < 0.001, and < 0.001 in the SNR of the lungs, mediastinum, and liver, respectively; all p < 0.001 in the CNR). According to the subjective analysis, DLIR had higher image contrast and lower image noise than ASiR-V 30% (all p < 0.001). DLIR was superior to ASiR-V 30% in identifying the pulmonary arteries and veins, trachea and bronchi, lymph nodes, and pleura and pericardium (all p < 0.001). Conclusion: DLIR significantly reduced the image noise in chest LDCT scan images compared with ASiR-V 30% while maintaining superior image quality.

심근생존능검사 시 가돌리늄 함유량이 높은 조영제의 유용성 (Usefulness of contrast agent involving high gadolium content for myocardial viability assessment)

  • 최관우;손순룡;김태형;한만석;이희주;민정환
    • 한국산학기술학회논문지
    • /
    • 제14권3호
    • /
    • pp.1294-1300
    • /
    • 2013
  • 본 연구는 심근생존능검사 시 가돌리늄 함유량이 높은 조영제(1mmol/mL)를 사용함으로써 대조도대잡음비(CNR)를 높이고, 이로 인한 진단적 가치를 극대화 시키는데 연구의 목적을 두었다. 조사방법은 단위부피당 0.5mmol/mL의 함유량을 가진 기존의 조영제(gadoterate meglumine)를 사용한 284명과 1mmol/mL의 함유량을 가진 새로운 조영제(gadobutrol)를 사용한 120명 등 총 404명의 환자를 연구대상으로, 가돌리늄 함유량에 따른 대조도 차이를 알아보기 위하여 좌심실과 정상심근의 신호강도를 각각 측정한 후 신호대잡음비(SNR)와 CNR을 비교 평가하였다. 연구 결과, 가돌리늄 함유량이 1mmol/mL 조영제 사용 시 SNR은 심근이 25.13%, 심실이 30.74% 높았고, CNR 또한 SNR과 같이 31.29% 높았으며, 통계적으로도 매우 유의하였다. 결론적으로 가돌리늄 함유량이 높은 1mmol/mL 조영제의 사용으로 높은 T1 단축효과를 나타내어 신호강도가 커지고, 이로 인해 대조도 차이가 큰 영상을 얻어 진단적 가치가 높았다. 본 연구는 심장질환이 의심되는 환자에 대한 1mmol/mL 조영제의 유용성을 최초로 증명하여 진단적 가치를 높일 수 있다는 데에 학문적 의의가 있다.

소아용 두부 컴퓨터단층촬영에서 딥러닝 영상 재구성 적용: 영상 품질에 대한 고찰 (Adaptation of Deep Learning Image Reconstruction for Pediatric Head CT: A Focus on the Image Quality)

  • 이님;조현혜;이소미;유선경
    • 대한영상의학회지
    • /
    • 제84권1호
    • /
    • pp.240-252
    • /
    • 2023
  • 목적 소아 환자에서 두부 컴퓨터단층촬영(이하 CT)에 대한 딥러닝 이미지 재구성(deep learning image reconstruction; 이하 DLIR; TrueFidelity; GE Healthcare, Milwaukee, WI, USA)의 효과를 평가하고자 한다. 대상과 방법 총 126개의 소아 두부 CT 이미지를 수집했으며, adaptive statistical iterative reconstruction (이하 ASiR)-V를 사용한 반복적 재구성 및 세 가지 수준의 DLIR을 사용한 재구성을 시행하였다. 각 이미지 세트 그룹은 환자의 연령에 따라 4개의 그룹으로 구분하였으며 각 연령군의 임상 및 방사선량 관련 데이터를 검토하였다. 양적 매개 변수에는 signal to noise ratio (이하 SNR) 및 contrast to noise ratio (이하 CNR)가 포함되었으며 질적 매개 변수로 영상의 잡음(noise), 회백질의 구분 정도, 선명도, 인공물 및 수용 가능성(acceptability), 영상의 질감이 포함되었고 이에 대한 평가와 비교를 시행하였다. 결과 모든 연령 그룹의 모든 수준의 SNR 및 CNR은 높은 수준의 DLIR 사용 시 증가하였다. ASiR-V와 비교했을 때 높은 수준의 DLIR은 SNR 및 CNR이 개선되었다(p < 0.05). 그리고 DLIR의 수준이 증가될수록 순차적인 잡음 감소, 회백질 구분 개선, 선명도 개선이 나타났다. 이러한 변수들에서 높은 수준의 DLIR 사용 시 ASiR-V와 유사한 정도의 수치가 측정되었다. 인공물과 수용 가능성의 경우에 적용된 DLIR 수준 간에 큰 차이를 보이지 않았다. 결론 소아 두부 CT에 고수준 DLIR을 적용하면 영상의 노이즈를 줄일 수 있으나 인공물 처리에 대한 개선이 필요하다.

Median modified wiener filter for improving the image quality of gamma camera images

  • Park, Chan Rok;Kang, Seong-Hyeon;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2328-2333
    • /
    • 2020
  • The filter technique was applied to noise images, as noise is the significant factor that cause poor image quality due to lower photon counting. The purpose of this study is to confirm that image quality can be improved using the median modified Wiener filter (MMWF) technique; this is achieved via a National Electrical Manufacturers Association International Electrotechnical Commission body phantom with four large spheres that are filled with the 99mTc radioisotope when evaluating the image quality. Conventional filters such as Wiener, Gaussian, and median filters were designed, and signal to noise ratio, coefficient of variation, and contrast to noise ratio were used as the evaluation parameters. The improvement in the image quality was in the following order, from the least to the highest improvement, in all cases: Wiener filter, Gaussian filter, median filter, and the MMWF technique. The results show that the image quality was improved from 20.6 to 65.5%, 7.4-40.3%, and 12.7-44.7% for the SNR, COV, and CNR values, respectively, when using the MMWF technique, compared with the use of conventional filters. In conclusion, our results demonstrated that the MMWF technique is useful for reducing the noise distribution in gamma camera images.

분산성 램파의 전파에서 입력 파형의 복원을 위한 신호처리 (Signal Processing Techniques for Recovering Input Waveforms in Dispersive Lamb Wave Propagation)

  • 정현조;조성종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.694-695
    • /
    • 2013
  • An experimental study has been made with the use of time reversal concepts to recover the input waveform in a long range propagation of dispersive Lamb waves. Three techniques have been tested: Regular TR, 1 bit TR and Inverse filter (IF). The IF approach was found to completely recover the original input signal. Moreover, the IF technique significantly increases the contrast, i.e., the ratio of the recovered signal and the sideband signal.

  • PDF

간 질환 감별에 있이 MR영상의 역동적 검사와 EPI의 유용성 (Value of Echo-Planar Imaging and MRI Dynamic Study in Differentiation Liver Diseases)

  • 박병래
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제20권2호
    • /
    • pp.73-78
    • /
    • 1997
  • The goal of this paper is that we know the usefulness of echo-planar imaging(EPI) for discriminate between hepatocellular carcinoma(HCC) and hemangioma. We get a time signal intensity curve for liver diseases from the dynamic contrast enhancement images and compared and analyze both the contrast ratio(CR) and the contrast to noise ratio(CNR) using echo planar imaging. The obtained results are follows : 1. Hepatocellular carcinoma was shown the best contrast after about 20 seconds when Is the earlist time in the main artery, and then reduced. The center where is disease was shown the characteristic that the best contrast is appeared after about 35-45 seconds and then slowly reduced. Liver parenchyma was shown the best contrast and reduced after 60 seconds. 2. The peripheral nodular of hemangioma was shown the better contrast soon. On the other hend, the contrast of center where is disease started to increase after 60 seconds and was equal to that of liver parenchyma. Increasing of the contrast continued after. 3. Turbo SE technic was used, the average of CR for hepatocellular carcinoma was $36.7{\pm}1.2$ and the average of CNR was $2.4{\pm}3.2$, while the average of CNR for hemangioma was $54.9{\pm}1.0$ and the average of CNR was $9.7{\pm}1.3$. 4. EPI technic was used, the average of CR for hepatocellular carcinoma was $47.8{\pm}1.2$ and the average of CNR was $3.4{\pm}2.1$, while the average of CNR for hemangioma was $75.7{\pm}2.2$ and the average of CNR was $9.5{\pm}1.1$. According to above we can find that hemangioma is more bright than hepatocellular carcinoma and the difference of brightness between hepatocellular carcinoma and hemangioma is useful sequence.

  • PDF

Hybrid Filter Based on Neural Networks for Removing Quantum Noise in Low-Dose Medical X-ray CT Images

  • Park, Keunho;Lee, Hee-Shin;Lee, Joonwhoan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권2호
    • /
    • pp.102-110
    • /
    • 2015
  • The main source of noise in computed tomography (CT) images is a quantum noise, which results from statistical fluctuations of X-ray quanta reaching the detector. This paper proposes a neural network (NN) based hybrid filter for removing quantum noise. The proposed filter consists of bilateral filters (BFs), a single or multiple neural edge enhancer(s) (NEE), and a neural filter (NF) to combine them. The BFs take into account the difference in value from the neighbors, to preserve edges while smoothing. The NEE is used to clearly enhance the desired edges from noisy images. The NF acts like a fusion operator, and attempts to construct an enhanced output image. Several measurements are used to evaluate the image quality, like the root mean square error (RMSE), the improvement in signal to noise ratio (ISNR), the standard deviation ratio (MSR), and the contrast to noise ratio (CNR). Also, the modulation transfer function (MTF) is used as a means of determining how well the edge structure is preserved. In terms of all those measurements and means, the proposed filter shows better performance than the guided filter, and the nonlocal means (NLM) filter. In addition, there is no severe restriction to select the number of inputs for the fusion operator differently from the neuro-fuzzy system. Therefore, without concerning too much about the filter selection for fusion, one could apply the proposed hybrid filter to various images with different modalities, once the corresponding noise characteristics are explored.

Performance analysis of improved hybrid median filter applied to X-ray computed tomography images obtained with high-resolution photon-counting CZT detector: A pilot study

  • Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3380-3389
    • /
    • 2022
  • We evaluated the performance of an improved hybrid median filter (IHMF) applied to X-ray computed tomography (CT) images obtained using a high-resolution photon-counting cadmium zinc telluride (CZT) detector. To study how the proposed approach improves the image quality, we measured the noise levels and the overall CT-image quality. We established a CZT imaging system with a detector length of 5.12 cm and thickness of 0.3 cm and acquired phantom images. To evaluate the efficacy of the proposed filter, we first modeled two conventional median filters. Subsequently, we were able to achieve a normalized noise power spectrum result of ~10-8 mm2, and furthermore, the proposed method improved the contrast-to-noise ratio by a factor of ~1.51 and the coefficient of variation by 1.55 relative to the counterpart values of the no-filter image. In addition, the IHMF exhibited the best performance among the three filters considered as regards the peak signal-to-noise ratio and no-reference-based image-quality evaluation parameters. Thus, our results demonstrate that the IHMF approach provides a superior image performance over conventional median filtering methods when applied to actual CZT X-ray CT images.

컴퓨터단층촬영 검사 시 테이블 높이에 따른 화질 특성에 관한 연구 (A Study on Characteristic of Image Quality according to CT Table Height in Computed Tomography )

  • 김기원;민정환;이상선;이영봉;이기종;박한솔;오주영
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권4호
    • /
    • pp.295-301
    • /
    • 2023
  • In addition to protocol adjustments during CT examinations, the height of the CT table can also affect image quality. Therefore, this study aimed to investigate the change in image quality depending on the height of the table in brain CT, which accounts for a large proportion of CT examinations, by measuring signal to contrast to noise ratio (CNR) and noise power spectrum (NPS) using the head phantom and evaluating them. The head phantom images were acquired using Philips Brilliance iCT 256. When the image was acquired, the table height was adjusted to 815, 865, 915, 965, 1015, and 1030 mm, respectively, and each scan was performed 3 times for each height. The CNR result showed the highest value at 965 mm, which is the height adjacent to the center of the head phantom. NPS showed the lowest NPS at 915 mm, the center of the head phantom in the low frequency region. From these results, it can be seen that the height of the table in CT examination is closely related to the image quality, and it can be seen the characteristics of image quality according to CT table through quantitative evaluation methods such as CNR and NPS.