• Title/Summary/Keyword: Contradiction

Search Result 377, Processing Time 0.026 seconds

Classification of Contradiction Relations and their Solving Dimensions based on the Butterfly Model for Contradiction Solving for Physical Contradiction of TRIZ (트리즈의 물리적 모순에 대한 모순해결 나비모형의 모순관계와 해결차원 분류)

  • Hyun, Jung Suk;Park, Chan Jung
    • Knowledge Management Research
    • /
    • v.15 no.4
    • /
    • pp.15-34
    • /
    • 2014
  • Creative problem solving has become an important issue in many fields. Among problems, dilemma need creative solutions. New creative and innovative problem solving strategies are required to handle the contradiction relations of the dilemma problems because most creative and innovative cases solved contradictions inherent in the dilemmas. Among various kinds of problem solving theories, TRIZ provides the concept of physical contradiction as a common problem solving principle in inventions and patents. In TRIZ, 4 separation principles solve the physical contradictions of given problems. The 4 separation principles are separation in time, separation in space, separation within a whole and its parts, and separation upon conditions. Despite this attention, an accurate definitions of the separation principles of TRIZ is missing from the literature. Thus, there have been several different interpretations about the separation principles of TRIZ. The different interpretations make problems more ambiguous to solve when the problem solvers apply the 4 separation principles. This research aims to fill the gap in several ways. First, this paper classify the types of contradiction relations and the contradiction solving dimensions based on the Butterfly model for contradiction solving. Second, this paper compares and analyzes each contradiction relation type with the Butterfly diagram. The contributions of this paper lies in reducing the problem space by recognizing the structures and the types of contradiction problems exactly.

Review and Application of Creative Problem-Solving Processes for Technical and Physical Contradictions Using Cause-And-Effect Contradiction Tree and Integrated Principles of TRIZ (TRIZ 인과관계 모순트리와 통합원리를 이용한 물리적 모순의 창의적 해결방안의 고찰 및 적용방안)

  • Choi, Sung-woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.215-228
    • /
    • 2015
  • A creative innovation and an innovative problem-solving of industrial companies can be achieved by overcoming the challenges of technical and physical contradictions. The approaches to address conflicting and paradoxical problems, such as technical and physical contradictions have a crucial role in advancing the quality assessment for manufacturer and service provider. The term, technical contradiction, depicts the state that improvement of one ends of IFR (Ideal Final Result) leads to unfavorable condition of the other ends, and results in conflicting problem. Another type of contradictions that's discussed in this study is a physical contradiction which is due to two mutually opposing states of the means of ends, and gives paradoxical situation. By integrating the means-ends chain perspectives, the physical contradiction that is a specifically root-causes, "means", can be initially addressed to resolve the downstream problem of technical contradiction which represents a general and abstract goals, "ends". This research suggests IFR resolution processes to handle both physical contradiction of means and technical contradiction of ends by employing causal relationship with IFR, effects and causes. In summary, the study represents three major processes that resolve such contradictions are demonstrated as follows: 1) Derivation of causal and hierarchical relationship among IFR, ends and means by considering CAED (Cause-And-Effect Diagram) and LT (Logic Tree). 2) Identification of causal relationship between physical contradiction and technical contradiction by using TPCT (TRIZ Physical Contradiction Tree) and TCD (Technical Contradiction Diagram). 3) Application of integrated TRIZ principles by classifying 40 inventive principles into 4 general conditions of the separation principle of mutually opposite states in space, in time, based on conditions, and between the parts and the whole. In order to validate the proof of proposed IFR resolution processes, the analysis of the TRIZ case studies from National Quality Circle Contest in the years, 2011 to 2014 have been proposed. The suggested guidelines that are built based on TRIZ principles can uniquely enhance the process of quality innovation and assessment for quality practitioners.

Butterfly Chatbot: Finding a Concrete Solution Strategy to Solve Contradiction Problems

  • Hyun, Jung Suk;Park, Chan Jung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.77-87
    • /
    • 2019
  • The Butterfly model, which aims to solve contradiction problems, defines the type of contradiction for given problems and finds the problem-solving objectives and their strategies. Unlike the ARIZ algorithm in TRIZ, the Butterfly model is based on logical proposition, which helps to reduce trial and errors and quickly narrows the problem space for solutions. However, it is hard for problem solvers to define the right propositional relations in the previous Butterfly algorithm. In this research, we propose a contradiction solving algorithm which determines the right problem-solving strategy just with yes or no simple questions. Also, we implement the Butterfly Chatbot based on the proposed algorithm that provides visual and auditory information at the same time and help people solve the contradiction problems. The Butterfly Chatbot can solve contradictions effectively in a short period of time by eliminating arbitrary alternative choices and reducing the problem space.

Classifying and Implementing Different Types of Contradiction Resolution Strategies in TRIZ (TRIZ에서 모순해결전략의 유형 및 적용)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.381-396
    • /
    • 2015
  • The study proposes multiple TRIZ contradiction solution strategies for addressing PC (Physical Contradiction) and TC (Technical Contradiction) by implementing TRIZ cause-and-effect tree. The problem associated with TC of the ends is solved by PC of means which employs a causal relationship between causes and effects. The TRIZ contradiction solution strategies demonstrated in this research are classified into 3 types of combined strategy as follows: 1. To-Be PC and AS-Is PC, 2.To-Be PC and As-Is TC, 3.As-Is PC and To-Be TC. The combined strategy of To-Be PC and As-Is PC is similar to a divide-and-conquer technique. This strategy adopts parallel strategies using 4 separation principles in time, in space, between parts and the whole, and upon condition of two reversed-PCs. Moreover, its application elucidates the conflict relationship of two TCs from the study. The integrated 4 separation principles and 40 inventive principles present an effective synergy effect from the combination, and further addresses the problems in the TRIZ contradiction resolution strategies. Combined strategy of To-Be PC and As-Is TC implements the 40 inventive principles that To-Be PC of the means resolves the As-Is TC of the ends. Combined strategy of As-Is PC and To-Be TC also uses inventive principles to the As-Is PC of the means to solve the To-Be TC of the ends. In addition, propositional and logical relationship of necessary and sufficient conditions between TC and PC is used to support the validity of 3 TRIZ contradiction solution strategies. In addition, 3 other strategies of necessary and sufficient conditions validate the contraposition relationship of the truth table. This study discusses TRIZ case studies from National Quality Circle Contest from the years between 2011 and 2014 to provide the usage guidelines of TRIZ contradiction solutions for quality purposes. Examining analysis from the case studies and investigating combined strategies allows the users to obtain comprehensive understanding.

Learning Effects of Divide-and-Combine Principles and State Models on Contradiction Problem Solving and Growth Mindset (분할-결합 원리와 상태모형에 대한 학습이 모순문제 해결과 성장 마인드세트에 미치는 영향)

  • Hyun, Jung Suk;Park, Chan Jung
    • Knowledge Management Research
    • /
    • v.14 no.4
    • /
    • pp.19-46
    • /
    • 2013
  • This paper aims to show the learning process and the educational effects of Divide-and-Combine principles and State Models, which are included in the Butterfly Model for creative problem solving. In our State Models, there are Time State Model, Space State Model, and Whole-Parts State Model. We have taught middle school students (for 18 hours), high school students (for 24 hours), and undergraduate students (for 1 semester) about our proposed Models when they solved contradiction problems. Also, we have made the students learn our contradiction resolution algorithms by themselves based on team-based discussion. By learning and by using our Models, the students had the higher level of expertise in contradiction problems and had the growth mindset that made them have confidence in themselves and kept them challenging themselves about problems. Also, learning and solving with our Models improved the students' growth mindset as well as their problem-solving ability.

  • PDF

Creative Problem Solving Process using TRIZ Contradiction Analysis (트리즈의 모순분석을 활용한 창의적 문제해결 실습과정)

  • Kim, Taioun
    • Journal of Engineering Education Research
    • /
    • v.18 no.3
    • /
    • pp.39-45
    • /
    • 2015
  • Many methods have been suggested for a creative problem solving approach. TRIZ approach is ranked top in its practical application because it is originated from the real patent analysis. This approach is assumed to be generic which can be applied to any types of problems regardless of problem type and its domain. The objective of this study is to propose a creative problem solving approach using TRIZ's contradiction analysis, then introduce a case study of applying this approach to a creative design coursework. Main topic covers a creative problem solving approach, a problem definition using TRIZ contradiction analysis, finding invention principles, and problem solving from the generic approach. For the course project, Roborobo tool is adopted to implement the design concept. This coursework helps students finding a general problem solving approach, and applying a generic solution for their specific problem domain.

Dialetheism and the Sorites Paradox (양진주의와 더미 역설)

  • Lee, Jinhee
    • Korean Journal of Logic
    • /
    • v.22 no.1
    • /
    • pp.87-124
    • /
    • 2019
  • A dialetheic approach to the sorites paradox is to understand a borderline case as a true contradiction. In order to accommodate this approach, the possibility of an alternative that does not involve a contradiction should be considered first. Beall presents an alternative that has all virtues of dialetheic solution without contradiction. I do not think his alternative has no contradiction. Using the inclosure schema I will show it. Furthermore, I will show that all alternatives which do not accept the existence of cut-off point imply a contradiction. This means that we have to accept a true contradiction as long as we accept the intuition of vagueness, especially, what is called 'tolerance'.

Development and Application of the Butterfly Algorithm Based on Decision Making Tree for Contradiction Problem Solving (모순 문제 해결을 위한 의사결정트리 기반 나비 알고리즘의 개발과 적용)

  • Hyun, Jung Suk;Ko, Ye June;Kim, Yung Gyeol;Jean, Seungjae;Park, Chan Jung
    • The Journal of Korean Association of Computer Education
    • /
    • v.22 no.1
    • /
    • pp.87-98
    • /
    • 2019
  • It is easy to assume that contradictions are logically incorrect or empty sets that have no solvability. This dilemma, which can not be done, is difficult to solve because it has to solve the contradiction hidden in it. Paradoxically, therefore, contradiction resolution has been viewed as an innovative and creative problem-solving. TRIZ, which analyzes the solution of the problem from the perspective of resolving contradictions, has been used for people rather than computers. The Butterfly model, which analyzes the problem from the perspective of solving the contradiction like TRIZ, analyzed the type of contradiction problem using symbolic logic. In order to apply an appropriate concrete solution strategy for a given contradiction problems, we designed the Butterfly algorithm based on decision making tree. We also developed a visualization tool based on Python tkInter to find concrete solution strategies for given contradiction problems. In order to verify the developed tool, the third grade students of middle school learned the Butterfly algorithm, analyzed the contradiction of the wooden support, and won the grand prize at an invention contest in search of a new solution. The Butterfly algorithm developed in this paper systematically reduces the solution space of contradictory problems in the beginning of problem solving and can help solve contradiction problems without trial and errors.

Law of Non-Contradiction as a Metaphysical Foundation: Is a Contradiction Observable? (형이상학적 원리로서의 무모순율: 모순이 관찰 가능한가?)

  • Song, Hasuk
    • Korean Journal of Logic
    • /
    • v.17 no.3
    • /
    • pp.373-399
    • /
    • 2014
  • This paper deals with the question whether the metaphysical dialetheism is a persuasive view or not. That is, the purpose of this paper is to criticize the metaphysical dialetheism by answering three questions, whether the dialetheism is compatible with the correspondence theory of truth, whether there is an observable contradiction, finally what the status of LNC is. In conclusion, it is argued that dialetheism is incompatible with the correspondence theory of truth, because it results in trivialism to suppose that two views are compatible. It is also claimed that LNC should be understood as the principle of exclusion which constrains the structure of the world and that the real world is consistent. Therefore, there is no observable contradiction in the world and the metaphysical dialetheism is not persuasive.

  • PDF

A Study on Improvement of Introductions and Applications of 'Proof by Contradiction' in Textbooks (교과서의 귀류법 도입과 활용에 대한 고찰 및 개선 방안)

  • Lee, Gi Don;Hong, Gapju
    • School Mathematics
    • /
    • v.18 no.4
    • /
    • pp.839-856
    • /
    • 2016
  • In 2009 revision and 2015 revision mathematics national curriculum, 'proof' was moved to high school from middle school in consideration of the cognitive development level of students, and 'proof by contradiction' was stated in the "success criteria of learning contents" of the first year high school subject while it had been not officially introduced in $7^{th}$ and 2007 revision national curriculum. Proof by contradiction is known that it induces a cognitive conflict due to the unique nature of rather assuming the opposite of the statement for proving it. In this article, based on the logical, mathematical and historical analysis of Proof by contradiction, we looked about the introductions and the applications of the current textbooks which had been revised recently, and searched for improvement measures from the viewpoint of discovery, explanation, and consilience. We suggested introducing Proof by contradiction after describing the discovery process earlier, separately but organically describing parts necessary to assume the opposite and parts not necessary, disclosing the relationships with proof by contrapositive, and using the viewpoint of consilience.