• 제목/요약/키워드: Contra Rotating Propeller(CRP)

검색결과 8건 처리시간 0.027초

와류격자법에 의한 정상유동중의 상반회신 프로펠러 성능해석 (Analysis of Contra-Rotating Propellers in Setady Flow by a Vortex Lattice Method)

  • 서성부
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.36-43
    • /
    • 2000
  • In this paper a Vortex Lattice Method is used to predict the performances of a contra-Rotating Propeller. Greeley and Kerwin's(1982) wake model is adopted instead of the exact trailing vortex geometry. The interaction of the two propellers is treated by the sense that the induction of one propeller upon the other propeller is averaged in the circumferential direction . Two single propellers (DTRC 4119 & DTRC 4842) are chosen and compared with the experimental and other numerical results published. Then the computational results for three CRP's (4-0-4 CRP(DTRC 3686+DTRC 3687A) 4-0-5 CRP(DTRC 3686+DTRC 3849) & DTRC CRT(DTRC 5067+DTRC 5068) are compared with the experimental and numerical results published. The interaction of both propellers by the change of inflow velocity and circulation of each propeller is investigated.

  • PDF

Study on the Contra-Rotating Propeller system design and full-scale performance prediction method

  • Min, Keh-Sik;Chang, Bong-Jun;Seo, Heung-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제1권1호
    • /
    • pp.29-38
    • /
    • 2009
  • A ship's screw-propeller produces thrust by rotation and, at the same time, generates rotational flow behind the propeller. This rotational flow has no contribution to the generation of thrust, but instead produces energy loss. By recovering part of the lost energy in the rotational flow, therefore, it is possible to improve the propulsion efficiency. The contra-rotating propeller (CRP) system is the representing example of such devices. Unfortunately, however, neither a design method nor a full-scale performance prediction procedure for the CRP system has been well established yet. The authors have long performed studies on the CRP system, and some of the results from the authors' studies shall be presented and discussed.

Investigation on the wake evolution of contra-rotating propeller using RANS computation and SPIV measurement

  • Paik, Kwang-Jun;Hwang, Seunghyun;Jung, Jaekwon;Lee, Taegu;Lee, Yeong-Yeon;Ahn, Haeseong;Van, Suak-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.595-609
    • /
    • 2015
  • The wake characteristics of Contra-Rotating Propeller (CRP) were investigated using numerical simulation and flow measurement. The numerical simulation was carried out with a commercial CFD code based on a Reynolds Averaged Navier-Stokes (RANS) equations solver, and the flow measurement was performed with Stereoscopic Particle Image Velocimetry (SPIV) system. The simulation results were validated through the comparison with the experiment results measured around the leading edge of rudder to investigate the effect of propeller operation under the conditions without propeller, with forward propeller alone, and with both forward and aft propellers. The evolution of CRP wake was analyzed through velocity and vorticity contours on three transverse planes and one longitudinal plane based on CFD results. The trajectories of propeller tip vortex core in the cases with and without aft propeller were also compared, and larger wake contraction with CRP was confirmed.

A BEM/RANS interactive method for predicting contra-rotating propeller performance

  • Su, Yiran;Kinnas, Spyros A.
    • Ocean Systems Engineering
    • /
    • 제7권4호
    • /
    • pp.329-344
    • /
    • 2017
  • This paper introduces a BEM/RANS interactive scheme to predict the contra-rotating propeller (CRP) performance. In this scheme, the forward propeller and the aft propeller are handled by two separate BEM models while the interactions between them are achieved by coupling them with a RANS solver. By using the body force field and mass source field to represent the propeller in the RANS model, the number of RANS cells and the number of required RANS iterations reduce significantly. The method provides an efficient way to predict the effective wake, the steady/unsteady propeller forces, etc. The BEM/RANS interactive scheme is first applied to a CRP in both an axisymmetric manner and a non-axisymmetric manner. Results are shown in good agreement with the experimental data in moderate to high advance ratios. It is proved that the difference between the axisymmetric scheme and the non-axisymmetric scheme mainly comes from the non-axisymmetric bodies. It is also found that the error is larger at lower advance ratios. Possible explanations are given. Finally, some additional cases are tested which justifies that the non-axisymmetric BEM/RANS scheme is able to handle a podded CRP working at given inclination angles.

EEDI 개선을 위한 상반 회전 프로펠러 단독성능 분석용 수치해석과 모형시험에 대한 연구 (A Numerical and Experimental Procedure for the Open Water Characteristics of Contra-Rotating Propellers for EEDI Improvement)

  • 김문찬;송무석;강현지;김동언
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제16권4호
    • /
    • pp.248-254
    • /
    • 2013
  • IMO가 도입한 Energy Efficiency Design Index (EEDI)의 강제로 최근 관심이 증가되고 있는 상반회전 프로펠러(Contra-Rotating Propeller, CRP)의 단독 상태에서의 성능평가를 위한 보오텍스격자법(Vortex Lattice Method) 기반의 포텐셜 수치해법과 모형시험법을 확립하고 이를 특정 CRP에 적용하여 유용성을 검증하였다. 대상 CRP는 EEDI 개선을 목적으로 설계된 것으로 그 성능을 본 연구의 수치 및 실험 해석을 바탕으로 분석하였다. CRP의 설계점을 포함한 주 작동 영역에 대해 계산과 실험이 좋은 일치를 보임을 확인하였고, 본 연구를 통하여 제안된 기법은 향후 CRP 설계 및 성능해석에 유용하게 사용될 수 있으리라 생각된다.

상반회전 프로펠러의 날개수 조합에 따른 축기진력 연구 (Numerical Study on the Effects of Combination of Blade Number for Shaft Forces and Moments of Contra-Rotating Propeller)

  • 백광준;이진석;이태구;;박형길;서종수
    • 대한조선학회논문집
    • /
    • 제50권5호
    • /
    • pp.282-290
    • /
    • 2013
  • The effects of the combination of blade number for forward and after propeller on the propeller shaft forces of a contra-rotating propeller (CRP) system are presented in the paper. The research is performed through the numerical simulations based on the Reynolds-Averaged Navier-Stokes equations (RANS). The simulation results of the present method in open water condition are validated comparing with the experimental data as well as the other numerical simulation results based on the potential method for 4-0-4 CRP (3686+3687A) and 4-0-5 CRP (3686+3849) of DTNSRDC. Two sets of CRP are designed and simulated to study the effect of the combination of blade number in behind-hull condition. One set consists of 3-blade and 4-blade, while the other is 4-blade and 4-blade. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. From the simulation results, the fluctuations of axial force and moment are dominant in the case of same blade numbers for forward and after propellers, whereas the fluctuations of horizontal and vertical forces and moments are very large in the case of different blade numbers.

수상 자전거의 동력전달장치 설계 (Design of Power Transmission System of a Water Bike)

  • 최정규;김형태
    • 대한조선학회논문집
    • /
    • 제50권3호
    • /
    • pp.153-159
    • /
    • 2013
  • The power transmission system has always been considered critical for a human powered boat(or water bike) since it first showed up at Human Powered Vessel Festival. Mechanical problems, such as abrasions and other damages of the gear system for the power transmission, lead to poor durability and low efficiency of a boat. This paper described mechanical problems and a design process of power transmission system and then suggested the method to solve the problems. It is selected a module and a type of gears that are structurally stable thus can transmit the power durable. Especially the lower gear box is applied to CRP(contra rotating propeller) system for improving the structural stability and the propeller efficiency as well. As the results, the upper and lower gear box are designed and manufactured. And from the trial test, it is confirmed that the power transmission system is reliable.

상반회전 프로펠러 축계 저널 베어링 반력해석 (Reaction Force Analysis on the Journal Bearing of Shafting System with Contra-Rotating Propeller)

  • 신상훈;이승민
    • 한국산학기술학회논문지
    • /
    • 제20권10호
    • /
    • pp.270-276
    • /
    • 2019
  • 국제해사기구(IMO) 2020 규정에 의해, 2020년 1월부터 지정된 배출규제해역 밖을 운항하는 선박도 황 함유량이 0.5% 이하인 저유황유를 사용하여야한다. 고가의 저유황유 소비를 최소화하기 위해 에너지저감 장치의 도입이 시급하며, 그 중에서도 상반회전 프로펠러 시스템이 가장 효과적이라고 알려져 있다. 상반회전 프로펠러를 구동하는 축계는 내축과 외축으로 구성되고 상호 영향을 주는 시스템으로 하나의 축으로 이루어진 일반 축계 시스템보다 훨씬 복잡하며 무거운 구조이다. 국내에서는 처음으로 상반회전 프로펠러 축계 시스템을 장착하기 위해 37K 정유운반선 용 상반회전 프로펠러 축계의 초기 설계가 진행되었다. 본연구의 목적은 초기 설계의 선급승인을 위해 베어링 반력해석을 수행하여, 저널 베어링이 선급에서 요구하는 설계기준을 만족하는지를 검증하는 것이다. 프로펠러의 추력은 축 중심에 작용하는 것이 이상적이지만, 선미부 선체 형상에 의해 발생하는 불균일한 반류 등의 영향으로 추력 편심이 발생한다. 본 연구에서는 추력 편심을 반영한 하중조건을 적용하여 축계해석을 수행하였고, 그 결과를 선급 요구 설계기준과 비교하였다.