스네이크 알고리즘은 객체와 배경 사이의 활성 윤곽(active contour)을 추출하여 객체를 추적하는 기법으로 널리 사용되고 있지만, 객체 윤곽의 밝기 기울기 성분보다 배경에 존재하는 기울기 성분이 크면 객체 윤곽이 배경으로 잘못 수렴되는 문제를 갖는다. 또 객체의 급격한 이동으로 인해 객체의 윤곽이 탐색영역을 벗어나면 윤곽선이 객체의 내부로 수축되는(shrink) 현상이 발생하게 되어 객체 추적에 실패하게 된다. 본 논문에서는 이러한 기존의 문제점을 개선한 새로운 스네이크 윤곽 추적 방법을 제안한다. 먼저, 객체 경계에 존재하는 평균 기울기 방향만을 고려하도록 개선된 에지 에너지 함수와 스플라인 경계의 안쪽과 바깥쪽 영역의 명암차를 이용한 컨트라스트 에너지 함수를 제안하여 윤곽선이 배경에 잘못 수렴되는 문제를 해결하였다. 또한 이전 프레임과 현재 프레임의 차영상으로부터 스네이크 포인터의 모션 벡터를 얻고 이를 이용하여 이전 프레임의 스네이크 포인터를 현재 프레임의 객체 윤곽 부근으로 빠르게 이동시켜 윤곽선이 객체 내부로 수축되는 현상을 방지하였다. 실험 결과 제안하는 기법은 기존 방법들에 비하여 복잡한 배경에 더 강인하며 움직임이 큰 객체를 정확하게 추적할 수 있었다.
본 논문에서는 CONDENSATION 알고리즘을 이용하여 입자 필터(particle filter)에 기반 한 물체 추적 알고리즘을 제안한다. 입자 필터는 조건 확률 전파 모델(Conditional Density Propagation)인 베이지안(Bayesian) 추론 규칙을 적용하는 추적구조를 갖고 있기 때문에 다른 어떤 종류의 추적 알고리즘보다 뛰어난 성능을 보인다. 논문에서는 실험 결과를 통해, 외곽(contour) 추적 입자 필터가 복잡한 환경 속에서 강인한 추적 성능을 나타냄을 증명한다.
Recently, there have been efforts to construct hybrids among the existing methodologies for multiphase flow such as VOF, Level Set, and Front Tracking with the intention of facilitating simulations of general three-dimensional problems. As one of the hybrid method, we have developed the Level Contour Reconstruction Method (LCRM) for general three-dimensional multiphase flows including phase change. The main idea was focused on simplicity and a robust algorithm especially for the three-dimensional case. It combines characteristics of both Front Tracking and Level Set methods. While retaining an explicitly tracked interface using interfacial elements, the calculation of a vector distance function plays a crucial role in the periodic reconstruction of the interface elements in the LCRM method to maintain excellent mass conservation and interface fidelity. In addition, compact curvature formulation is incorporated for the calculation of the surface tension force thereby reducing parasitic currents to a negligible level.
본 논문에서는 능동윤곽모델에 기반을 둔 스네이크 알고리듬을 움직임 추정과 결합하여 안정적인 객체 추적 기술을 제안하였다. 초기 영상에서 목표 객체의 초기 윤곽을 지정한 후 스네이크 알고리듬을 사용하여 객체의 경계 영역을 찾아내고, 동시에 움직임 추정 기술을 사용하여 객체의 이동 방향과 거리를 예측하여 초기값을 갱신한다. 연속되는 다음 영상에서는 스네이크 알고리듬을 같은 방법을 사용하여 객체 영역을 추정한다. 스네이크 알고리듬은 배경과 객체를 구분하는 역할을 수행하고, 움직임 추정 알고리듬은 객체의 이동 방향과 변위를 찾아낸다. 제안된 기술은 기존의 형태모델에 기반을 둔 추적 기술에 비해 상당히 계산량이 줄기 때문에 실시간 객체 추적이 가능하며 복잡한 배경에서도 추적의 정확도를 유지하는 장점이 있다.
영상에서 관심있는 물체의 윤곽선을 추출하기 위해서 Kass등은 Snakes라고 불리우는 능동적 윤곽선 모델(active contour model)을 제안하였다. Snakes 모델은 내부 에너지,영상 에너지, 외부 에너지라는 에너지 함수를 사용하여 물체의 윤곽선을 정의하는 모델로 이 에너지 함수를 최소화함으로써 물체의 윤곽선을 찾을 수 있다 이 모델은 속도가 느리며초기화에 민감하다. 이 문제를 개선하기 위해 Gunn은 두 개의 초기화를 이용하여 정확한 윤곽선을 추출하고 초기화에 덜 민감하도록 하였다. 이 방법은 기존의 다른 방법에 비해 정확한 윤곽선을 추출할 수 있었으나, 속도면 에서는 상당히 효율적이지 못하고 잡음에 민감하였다. 본 논문에서는 이 문제를 해결하기 위하여 snakes을 이루는 각 윤곽점에 8$\times$8크기의 윈도우를 적용하여 윈도우내의 화소에 대해서만 에너지 최소화 알고리즘을 적용하였다.본 논문에서 제안한 방법은 원 영상과 컵 영상의 윤곽선 추출에 적용하였다. 제안한 방법을사용하여 얼굴을 추적하므로써 가상현실등에 응용되고 물체의 움직임 추적에도 응용될 수 있다.
Journal of information and communication convergence engineering
/
제6권1호
/
pp.100-104
/
2008
Generally, it is difficult to find constant patterns on identifiers in a container image, since the identifiers are not normalized in color, size, and position, etc. and their shapes are damaged by external environmental factors. This paper distinguishes identifier areas from background noises and removes noises by using an ART2-based quantization method and general morphological information on the identifiers such as color, size, ratio of height to width, and a distance from other identifiers. Individual identifier is extracted by applying the 8-directional contour tracking method to each identifier area. This paper proposes a refined ART2-based RBF network and applies it to the recognition of identifiers. Through experiments with 300 container images, the proposed algorithm showed more improved accuracy of recognizing container identifiers than the others proposed previously, in spite of using shorter training time.
본 논문은 도로영상에서 움직이는 물체 추적을 위한 윤곽선 및 형태 파라미터 추출방법을 제안코자 한다. 축소영상에서 차영상 방법을 이용하여 윤곽선을 추출하고 원영상에서 특징을 추출함으로써 추적의 정확성을 높이고자 한다. 사용된 특징은 물체화소의 원분포, 중심모멘트, 최대${\cdot}$최소비이다. 이를 이용하여 데이터 연상문제를 해결하였으며, 실시간 추적을 위하여 칼만필터를 사용하였다. 제안된 알고리즘에 의해 추출된 특징 벡터는 다중 차량 추적에 적합함을 실험을 통해 보였다.
The automatic recognition of transport containers using image processing is very hard because of the irregular size and position of identifiers, diverse colors of background and identifiers, and the impaired shapes of identifiers caused by container damages and the bent surface of container, etc. We proposed and evaluated the novel recognition algorithm of container identifiers that overcomes effectively the hardness and recognizes identifiers from container images captured in the various environments. The proposed algorithm, first, extracts the area including only all identifiers from container images by using CANNY masking and bi-directional histogram method. The extracted identifier area is binarized by the fuzzy binarization method newly proposed in this paper and by applying contour tracking method to the binarized area, container identifiers which are targets of recognition are extracted. We proposed and applied the ART2-based RBF network for recognition of container identifiers. The results of experiment for performance evaluation on the real container images showed that the proposed algorithm has more improved performance in the extraction and recognition of container identifiers than the previous algorithms.
International Journal of Control, Automation, and Systems
/
제4권2호
/
pp.236-246
/
2006
Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks such as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. In this paper, the development of new snake model called 'adaptive color snake model (ACSM)' for segmentation and tracking is introduced. The simple operation makes the algorithm runs in real-time. For robust tracking, the condensation algorithm was adopted to control the parameters of ACSM. The effectiveness of the ACSM is verified by appropriate simulations and experiments.
Particle filter is a kind of conditional density propagation model. Its similar characteristics to both selection and mutation operator of evolutionary strategy (ES) due to its Bayesian inference rule structure, shows better performance than any other tracking algorithms. When a new object is entering the region of interest, particle filter sets which have been swarming around the existing objects have to move and track the new one instantaneously. Moreover, there is another problem that it could not track multiple objects well if they were moving away from each other after having been overlapped. To resolve reinitialization problem, we use competitive-AVQ algorithm of neural network. And we regard interfarme difference (IFD) of background images as potential field and give priority to the particles according to this IFD to track multiple objects independently. In this paper, we showed that the possibility of real-time object tracking as intelligent interfaces by simulating the deformable contour particle filters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.