• 제목/요약/키워드: Contour Tracking Masking

검색결과 11건 처리시간 0.023초

Recognition of Passports using CDM Masking and ART2-based Hybrid Network

  • Kim, Kwang-Baek;Cho, Jae-Hyun;Woo, Young-Woon
    • Journal of information and communication convergence engineering
    • /
    • 제6권2호
    • /
    • pp.213-217
    • /
    • 2008
  • This paper proposes a novel method for the recognition of passports based on the CDM(Conditional Dilation Morphology) masking and the ART2-based RBF neural networks. For the extraction of individual codes for recognizing, this paper targets code sequence blocks including individual codes by applying Sobel masking, horizontal smearing and a contour tracking algorithm on the passport image. Individual codes are recovered and extracted from the binarized areas by applying CDM masking and vertical smearing. This paper also proposes an ART2-based hybrid network that adapts the ART2 network for the middle layer. This network is applied to the recognition of individual codes. The experiment results showed that the proposed method has superior in performance in the recognition of passport.

Recognition of Identifiers from Shipping Container Image by Using Fuzzy Binarization and ART2-based RBF Network

  • Kim, Kwang-Baek
    • 지능정보연구
    • /
    • 제9권2호
    • /
    • pp.1-18
    • /
    • 2003
  • The automatic recognition of transport containers using image processing is very hard because of the irregular size and position of identifiers, diverse colors of background and identifiers, and the impaired shapes of identifiers caused by container damages and the bent surface of container, etc. We proposed and evaluated the novel recognition algorithm of container identifiers that overcomes effectively the hardness and recognizes identifiers from container images captured in the various environments. The proposed algorithm, first, extracts the area including only all identifiers from container images by using CANNY masking and bi-directional histogram method. The extracted identifier area is binarized by the fuzzy binarization method newly proposed in this paper and by applying contour tracking method to the binarized area, container identifiers which are targets of recognition are extracted. We proposed and applied the ART2-based RBF network for recognition of container identifiers. The results of experiment for performance evaluation on the real container images showed that the proposed algorithm has more improved performance in the extraction and recognition of container identifiers than the previous algorithms.

  • PDF

Passport Recognition using Fuzzy Binarization and Enhanced Fuzzy RBF Network

  • Kim, Kwang-Baek
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.222-227
    • /
    • 2004
  • Today, an automatic and accurate processing using computer is essential because of the rapid increase of travelers. The determination of forged passports plays an important role in the immigration control system. Hence, as the preprocessing phase for the determination of forged passports, this paper proposes a novel method for the recognition of passports based on the fuzzy binarization and the fuzzy RBF network. First, for the extraction of individual codes for recognizing, this paper targets code sequence blocks including individual codes by applying Sobel masking, horizontal smearing and a contour tracking algorithm on the passport image. Then the proposed method binarizes the extracted blocks using fuzzy binarization based on the trapezoid type membership function. Then, as the last step, individual codes are recovered and extracted from the binarized areas by applying CDM masking and vertical smearing. This paper also proposes an enhanced fuzzy RBF network that adapts the enhanced fuzzy ART network for the middle layer. This network is applied to the recognition of individual codes. The results of the experiments for performance evaluation on the real passport images showed that the proposed method has the better performance compared with other approaches.

개선된 이진화와 윤곽선 추적 알고리즘을 이용한 운송 컨테이너의 식별자 추출 (Identifier Extraction of Shipping Container Images using Enhanced Binarization and Contour Tracking Algorithm)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.462-466
    • /
    • 2005
  • 운송 컨테이너 영상으로부터 식별자를 추출하고 인식하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, Canny 마스크가 적용된 영상에서 수직 수평 히스토그램을 적용하여 컨테이너의 식별자 영역을 추출한다 추출된 컨테이너의 식별자 영역을 퍼지 이진화 방법을 적용하여 이진화하고, 이진화된 컨테이너 식별자 영역을 윤곽선 추적 알고리즘으로 개별 식별자를 추출한다. 제안된 방법의 성능을 평가하기 위하여 실제 컨테이너 영상에 적용한 결과, 제안된 추출 방법이 컨테이너의 식별자 추출에 효율적인 것을 확인하였다.

An Intelligent System for Recognition of Identifiers from Shipping Container Images using Fuzzy Binarization and Enhanced Hybrid Network

  • Kim, Kwang-Baek
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.349-356
    • /
    • 2004
  • The automatic recognition of transport containers using image processing is very hard because of the irregular size and position of identifiers, diverse colors of background and identifiers, and the impaired shapes of identifiers caused by container damages and the bent surface of container, etc. In this paper we propose and evaluate a novel recognition algorithm for container identifiers that effectively overcomes these difficulties and recognizes identifiers from container images captured in various environments. The proposed algorithm, first, extracts the area containing only the identifiers from container images by using CANNY masking and bi-directional histogram method. The extracted identifier area is binarized by the fuzzy binarization method newly proposed in this paper. Then a contour tracking method is applied to the binarized area in order to extract the container identifiers which are the target for recognition. In this paper we also propose and apply a novel ART2-based hybrid network for recognition of container identifiers. The results of experiment for performance evaluation on the real container images showed that the proposed algorithm performs better for extraction and recognition of container identifiers compared to conventional algorithms.

Recognition of Identifiers from Shipping Container Image by Using Fuzzy Binarization and ART2-based RBF Network

  • Kim, Kwang-baek;Kim, Young-ju
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.88-95
    • /
    • 2003
  • The automatic recognition of transport containers using image processing is very hard because of the irregular size and position of identifiers, diverse colors of background and identifiers, and the impaired shapes of identifiers caused by container damages and the bent surface of container, etc. We proposed and evaluated the novel recognition algorithm of container identifiers that overcomes effectively the hardness and recognizes identifiers from container images captured in the various environments. The proposed algorithm, first, extracts the area including only all identifiers from container images by using CANNY masking and bi-directional histogram method. The extracted identifier area is binarized by the fuzzy binarization method newly proposed in this paper and by applying contour tracking method to the binarized area, container identifiers which are targets of recognition are extracted. We proposed and applied the ART2-based RBF network for recognition of container identifiers. The results of experiment for performance evaluation on the real container images showed that the proposed algorithm has more improved performance in the extraction and recognition of container identifiers than the previous algorithms.

  • PDF

Recognition of the Passport by Using Fuzzy Binarization and Enhanced Fuzzy Neural Networks

  • Kim, Kwang-Baek
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.603-607
    • /
    • 2003
  • The judgment of forged passports plays an important role in the immigration control system, for which the automatic and accurate processing is required because of the rapid increase of travelers. So, as the preprocessing phase for the judgment of forged passports, this paper proposed the novel method for the recognition of passport based on the fuzzy binarization and the fuzzy RBF neural network newly proposed. first, for the extraction of individual codes being recognized, the paper extracts code sequence blocks including individual codes by applying the Sobel masking, the horizontal smearing and the contour tracking algorithm in turn to the passport image, binarizes the extracted blocks by using the fuzzy binarization based on the membership function of trapezoid type, and, as the last step, recovers and extracts individual codes from the binarized areas by applying the CDM masking and the vertical smearing. Next, the paper proposed the enhanced fuzzy RBF neural network that adapts the enhanced fuzzy ART network to the middle layer and applied to the recognition of individual codes. The results of the experiment for performance evaluation on the real passport images showed that the proposed method in the paper has the improved performance in the recognition of passport.

  • PDF

ART2 기반 RBF 네트워크를 이용한 여권 인식 (Passports Recognition Using ART2-Based RBF Network)

  • 김광백;오암석
    • 한국멀티미디어학회논문지
    • /
    • 제8권5호
    • /
    • pp.700-706
    • /
    • 2005
  • 출입국 관리 시스템은 여권 소지자, 수배자, 출입국 금지자 또는 불법 체류자 등의 출입국 부적격자를 검색하여 출입국자를 관리하고 있다. 이러한 출입국 관리 시스템은 위조 여권 판별이 중요하므로 위조 여권을 판별하는 전 단계로 ART2 기반 RBF네트워크를 제안하여 여권을 인식하는 방법을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 스미어링 그리고 윤곽선 추적 알고리즘을 이용하여 코드의 문자열 영역과 개별 코드의 문자를 추출한다. 추출된 개별 코드 인식은 ART2 알고리즘을 기반으로 한 RBF네트워크를 제안하여 여권 인식에 적용한다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상들을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.

  • PDF

다해상도 영상과 개선된 RBF 네트워크를 이용한 계층적 영문 명함 인식 (Hierarchical Recognition of English Calling Card by Using Multiresolution Images and Enhanced RBF Network)

  • 김광백;김영주
    • 정보처리학회논문지B
    • /
    • 제10B권4호
    • /
    • pp.443-450
    • /
    • 2003
  • 본 논문은 영문 명함의 다해상도 영상을 이용한 계층적 영살 처리를 통해 문자를 추출하고 개선된 신경망 기법을 이용하여 문자를 인식하는 새로운 계층적 명함 인식 알고리즘을 제안하였다 계층적 인식 알고리즘은 명함 인식 과정을 구성하는 각 처리 단계별로 처리 시간을 단축함과 동시에 성능 향상을 위해 입력된 명함 영상을 해상도가 서로 다른 영상들로 분리하여 적용한다. 우선 1/3배 축소 영상에 가로 스미어링 기법을 적용하여 명함 영상 내에서 문자들을 포함하는 문자열 영역을 추출하고, 문자열 영역으로부터 개별 문자를 추출하기 위하여 1/2배 축소 영상에 새로 스미어링 및 윤곽선 추적 마스킹을 적용한다. 마지막으로 추출된 문자를 인식하기 위해서 문자의 형태학적 특성을 그대로 가지고 있는 원 영상을 사용하며, 다양한 형태를 가진 명함상의 문자를 인식하기 위해 ART1 기반의 개선된 RBF 네트워크를 제안하고 인식 과정에 적용하였다 제안된 인식 알고리즘을 실제 영문 명함 영상에 적용하여 실험한 결과, 기존의 방법과 비교하여 문자 추출 및 인식 성능이 크게 향상됨을 확인하였다.

RGB 컬러 정보와 퍼지 이진화를 이용한 차량 번호판의 개별 문자 추출 (Character Extraction of Car License Plates using RGB Color Information and Fuzzy Binarization)

  • 김광백;김문환;노영욱
    • 한국정보통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.80-87
    • /
    • 2004
  • 본 논문에서는 RGB 컬러 정보와 퍼지 이진화를 이용하여 차량 번호판의 개별 문자를 추출하는 방법을 제안한다. 제안된 방법은 비 영업용 차량 영상에서 녹색의 분포가 밀집되어 있는 영역들을 번호판의 후보 영역으로 추출하고 번호판의 후보 영역에서 흰색의 밀집도가 높은 부분을 번호판의 영역으로 선택한다. 개별 문자 추출은 추출된 번호판 영역에서 3${\times}$3소벨 마스크를 이용하여 잡음을 제거하고 퍼지 이진화 방법을 적용하여 번호판의 영역을 이진화한 다음에 윤곽선 추적 알고리즘을 적용하여 개별 문자를 추출한다. 제안된 방법을 실제 비 영업용 차량 번호판에 적용한 결과, 기존의 방법보다 번호판 영역에서 개별 문자의 추출률이 개선된 것을 확인하였다.