• Title/Summary/Keyword: Continuum model

Search Result 511, Processing Time 0.028 seconds

Aiming at "All Soils All States All Round Geo-Analysis Integration"

  • Asaoka, Akira;Noda, Toshihiro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.3-26
    • /
    • 2009
  • Superloading yield surface concept is newly introduced together with subloading yield surface conception in order to describe full gradation continuously of the mechanical behavior of soils from typical sand through intermediate soil to typical clay (All Soils). Finite deformation theory has been applied to the soil skeleton-pore water coupled continuum mechanics, which enables us to discuss things in a perpetual stream from stable state to unstable state like from deformation to failure and vice versa like from liquefaction to post liquefaction consolidation of sand (All States). Incremental form of the equation of motion has been employed in the continuum mechanics in order to incorporate a rate type constitutive equation, which is "All Round" enough to predict ground behavior under both static and dynamic conditions. The present paper is the shortened version of the lecture note delivered in 2008 Theoretical and Applied Mechanics Conference, Science Council Japan, but with newly developed application examples.

  • PDF

Dynamic response of vertically loaded rectangular barrettes in multilayered viscoelastic soil

  • Cao, Geng;Zhu, Ming X.;Gong, Wei M.;Wang, Xiao;Dai, Guo L.
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.275-287
    • /
    • 2020
  • Rectangular barrettes have been increasingly used as foundations for many infrastructure projects, but the vertical vibration of a barrette has been rarely addressed theoretically. This paper presents an analysis method of dynamic response for a rectangular barrette subjected to a time-harmonic vertical force with the aid of a modified Vlasov foundation model in multilayered viscoelastic soil. The barrette-soil system is modeled as a continuum, the vertical continuous displacement model for the barrette and soil is proposed. The governing equations of the barrette-soil system and the boundary conditions are obtained and the vertical shaft resistance of barrette is established by employing Hamilton's principle for the system and thin layer element, respectively. The physical meaning of the governing equations and shaft resistance is interpreted. The iterative solution algorithm flow is proposed to obtain the dynamic response of barrette. Good agreement of the analysis and comparison confirms the correctness of the present solution. A parametric study is further used to demonstrate the effects of cross section aspect ratio of barrettes, depth of soil column, and module ratio of substratum to the upper soil layers on the complex barrette-head stiffness and the resistance stiffness.

Use of infinite elements in simulating liquefaction phenomenon using coupled approach

  • Kumari, Sunita;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.375-387
    • /
    • 2013
  • Soils consist of an assemblage of particles with different sizes and shapes which form a skeleton whose voids are filled with water and air. Hence, soil behaviour must be analyzed by incorporating the effects of the transient flow of the pore-fluid through the voids, and therefore requires a two-phase continuum formulation for saturated porous media. The present paper presents briefly the Biot's basic theory of dynamics of saturated porous media with u-P formulation to determine the responses of pore fluid and soil skeleton during cyclic loading. Kelvin elements are attached to transmitting boundary. The Pastor-Zienkiewicz-Chan model has been used to describe the inelastic behavior of soils under isotropic cyclic loadings. Newmark-Beta method is employed to discretize the time domain. The response of fluid-saturated porous media which are subjected to time dependent loads has been simulated numerically to predict the liquefaction potential of a semi-infinite saturated sandy layer using finite-infinite elements. A settlement of 17.1 cm is observed at top surface. It is also noticed that liquefaction occurs at shallow depth. The mathematical advantage of the coupled finite element analysis is that the excess pore pressure and displacement can be evaluated simultaneously without using any empirical relationship.

Dynamic analysis of nanoscale beams including surface stress effects

  • Youcef, Djamel Ould;Kaci, Abdelhakim;Benzair, Abdelnour;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2018
  • In this article, an analytic non-classical model for the free vibrations of nanobeams accounting for surface stress effects is developed. The classical continuum mechanics fails to capture the surface energy effects and hence is not directly applicable at nanoscale. A general beam model based on Gurtin-Murdoch continuum surface elasticity theory is developed for the analysis of thin and thick beams. Thus, surface energy has a significant effect on the response of nanoscale structures, and is associated with their size-dependent behavior. To check the validity of the present analytic solution, the numerical results are compared with those obtained in the scientific literature. The influences of beam thickness, surface density, surface residual stress and surface elastic constants on the natural frequencies of nanobeams are also investigated. It is indicated that the effect of surface stress on the vibrational response of a nanobeam is dependent on its aspect ratio and thickness.

Estimation of main cable tension force of suspension bridges based on ambient vibration frequency measurements

  • Wang, Jun;Liu, Weiqing;Wang, Lu;Han, Xiaojian
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.939-957
    • /
    • 2015
  • In this paper, a new approach based on the continuum model is proposed to estimate the main cable tension force of suspension bridges from measured natural frequencies. This approach considered the vertical vibration of a main cable hinged at both towers and supported by an elastic girder and hangers along its entire length. The equation reflected the relationship between vibration frequency and horizontal tension force of a main cable was derived. To avoid to generate the additional cable tension force by sag-extensibility, the analytical solution of characteristic equation for anti-symmetrical vibration mode of the main cable was calculated. Then, the estimation of main cable tension force was carried out by anti-symmetric characteristic frequency vector. The errors of estimation due to characteristic frequency deviations were investigated through numerical analysis of the main cable of Taizhou Bridge. A field experiment was conducted to verify the proposed approach. Through measuring and analyzing the responses of a main cable of Taizhou Bridge under ambient excitation, the horizontal tension force of the main cable was identified from the first three odd frequencies. It is shown that the estimated results agree well with the designed values. The proposed approach can be used to conduct the long-term health monitoring of suspension bridges.

Preliminary numerical study on long-wavelength wave propagation in a jointed rock mass

  • Chong, Song-Hun;Kim, Ji-Won;Cho, Gye-Chun;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Non-destructive exploration using elastic waves has been widely used to characterize rock mass properties. Wave propagation in jointed rock masses is significantly governed by the characteristics and orientation of discontinuities. The relationship between spatial heterogeneity (i.e., joint spacing) and wavelength for elastic waves propagating through jointed rock masses have been investigated previously. Discontinuous rock masses can be considered as an equivalent continuum material when the wavelength of the propagating elastic wave exceeds the spatial heterogeneity. However, it is unclear how stress-dependent long-wavelength elastic waves propagate through a repetitive rock-joint system with multiple joints. A preliminary numerical simulation was performed in in this study to investigate long-wavelength elastic wave propagation in regularly jointed rock masses using the three-dimensional distinct element code program. First, experimental studies using the quasi-static resonant column (QSRC) testing device are performed on regularly jointed disc column specimens for three different materials (acetal, aluminum, and gneiss). The P- and S-wave velocities of the specimens are obtained under various normal stress levels. The normal and shear joint stiffness are calculated from the experimental results using an equivalent continuum model and used as input parameters for numerical analysis. The spatial and temporal sizes are carefully selected to guarantee a stable numerical simulation. Based on the calibrated jointed rock model, the numerical and experimental results are compared.

Development of the Big-size Statistical Volume Elements (BSVEs) Model for Fiber Reinforced Composite Based on the Mesh Cutting Technique (요소 절단법을 사용한 섬유강화 복합재료의 대규모 통계적 체적 요소 모델 개발)

  • Park, Kook Jin;Shin, SangJoon;Yun, Gunjin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.251-259
    • /
    • 2018
  • In this paper, statistical volume element modeling method was developed for multi-scale progressive failure analysis of fiber reinforced composite materials. Big-size statistical volume elements (BSVEs) was considered to minimize the size effect in the micro-scale, by including as many fibers as possible. For that purpose, a mesh cutting method is suggested and adapted into the fiber model generator that creates finite element domain rapidly. The fiber defect model was also developed based on the experimental distribution of the fiber strength. The size effects from the local load sharing (LLS) are evaluated by increasing the fiber inclusion in the micro-scale model. Finally, continuum damage mechanics (CDM) model to the fiber direction was extracted from numerical analysis on BSVEs. And it was compared with strength prediction from typical representative volume element (RVE) model.

Two-dimensional continuum modelling of an inductively coupled plasma reactor

  • Kim, Dong-Ho;Shung, Won-Young;Kim, Do-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.128-133
    • /
    • 2000
  • Numerical analysis of the transport phenomena in an inductively coupled plasma reactor was conducted with two-dimensional axisymmetric model including the electromagnetic field model, electron and species density models. The spatial distribution of the charged species in the ion flux to the wafer have been calculated to examine the influence of the process conditions including antenna and reactor geometry. The antenna radius had a significant influence on the plasma state and axial ion flux distribution.

  • PDF

Design Tool Development of NVH of Vehicle Body (자동차 소음, 진동 저감을 위한 차체 설계 프로그램 개발)

  • 왕세명;이제원;기성현;문희곤;서진관
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.57-63
    • /
    • 1998
  • In this paper, a design tool using continuum design sensitivity analysis (DSA) method has been developed for noise, vibration, and harshness (NVH). Design sensitivity is formulated, implemented numerically, and named SENS1. SENS1 can compute the design sensitivity using model and response files of MSC/NASTRAN of vehicle. A of real vehicle model is considered to validate SENS1. Numerical study shows SENS1 is a useful tool to improve NVH performances of vehicle body.

  • PDF

Calculation of the Solvation Free Energy of the Proton in Methanol

  • Hwang, Sun-Gu;Chung, Doo-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.589-593
    • /
    • 2005
  • The solvation free energy of proton in methanol was calculated by B3LYP flavor of density functional calculations in combination with the Poisson-Boltzmann continuum solvation model. In order to check the adequacy of the computation level, the free energies of clustering in the gas phase were compared with the experimental data. The solvents were taken into account in a hybrid manner, i.e. one to five molecules of methanol were explicitly considered while other solvent molecules were represented with an implicit solvation model.