• Title/Summary/Keyword: Continuous wavelet transform

Search Result 117, Processing Time 0.024 seconds

Earthquake time-frequency analysis using a new compatible wavelet function family

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.839-852
    • /
    • 2012
  • Earthquake records are often analyzed in various earthquake engineering problems, making time-frequency analysis for such records of primary concern. The best tool for such analysis appears to be based on wavelet functions; selection of which is not an easy task and is commonly carried through trial and error process. Furthermore, often a particular wavelet is adopted for analysis of various earthquakes irrespective of record's prime characteristics, e.g. wave's magnitude. A wavelet constructed based on records' characteristics may yield a more accurate solution and more efficient solution procedure in time-frequency analysis. In this study, a low-pass reconstruction filter is obtained for each earthquake record based on multi-resolution decomposition technique; the filter is then assigned to be the normalized version of the last approximation component with respect to its magnitude. The scaling and wavelet functions are computed using two-scale relations. The calculated wavelets are highly efficient in decomposing the original records as compared to other commonly used wavelets such as Daubechies2 wavelet. The method is further advantageous since it enables one to decompose the original record in such a way that a clear time-frequency resolution is obtained.

Fatigue damage monitoring and evolution for basalt fiber reinforced polymer materials

  • Li, Hui;Wang, Wentao;Zhou, Wensong
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.307-325
    • /
    • 2014
  • A newly developed method based on energy is presented to study the damage pattern of FRP material. Basalt fiber reinforced polymer (BFRP) is employed to monitor the damage under fatigue loading. In this study, acoustic emission technique (AE) combined with scanning electronic microscope (SEM) technique is employed to monitor the damage evolution of the BFRP specimen in an approximate continuous scanning way. The AE signals are analyzed based on the wavelet transform, and the analyses are confirmed by SEM images. Several damage patterns of BFRP material, such as matrix cracking, delamination, fiber fracture and their combinations, are identified through the experiment. According to the results, the cumulative energy (obtained from wavelet coefficients) of various damage patterns are closely related to the damage evolution of the BFRP specimens during the entire fatigue tests. It has been found that the proposed technique can effectively distinguish different damage patterns of FRP materials and describe the fatigue damage evolution.

Evaluation of pulse effect on frequency content of ground motions and definition of a new characteristic period

  • Yaghmaei-Sabegh, Saman
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.457-471
    • /
    • 2021
  • This study aims at providing a simple and effective methodology to define a meaningful characteristic period for special class of earthquake records named "pulse-like ground motions". In the proposed method, continuous wavelet transform is employed to extract the large pulse of ground motions. Then, Fourier amplitude spectra obtained from the original ground motion and the residual motion is simply compared. This comparison permits to define a threshold pulse-period (Tp∗) as the threshold period above which the pulse component has negligible contributions to the Fourier amplitude spectrum. The effect of pulse on frequency content of motions was discussed on the light of this definition. The advantage and superior features of the new definition were related to the inelastic displacement ratio (IDR) for single-degree-of-freedom systems with period equal to one half of the threshold period. Analyses performed for the proposed period at three ductility levels u=2,4,6 were compared with the results obtained at half of pulse period derived from wavelet analysis, peak-point method and the peak of product of the velocity and the displacement response spectra (Sv x Sd). According to the results, pulse effects on inelastic displacement ratio seem to be more important when $\frac{T_p^*}{T}=2$ (T is the fundamental vibration period of system). The results showed that utilizing of the proposed definition could facilitate an enhanced understanding of pulse-like records features.

Crack identification in beam-like structures using multi-mass system and wavelet transform

  • Siamak Ghadimi;Seyed Sina Kourehli;Gholamreza Zamani-Ahari
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.263-283
    • /
    • 2024
  • This research introduces a new composite system that utilizes multiple moving masses to identify cracks in structures resembling beams. The process starts by recording displacement time data from a set of these moving masses and converting this information into a relative time history through weighted aggregation. This relative time history then undergoes wavelet transform analysis to precisely locate cracks. Following wavelet examinations, specific points along the beam are determined as potential crack sites. These points, along with locations on the beam susceptible to cracked point due to support conditions, are marked as crack locations within the optimization algorithm's search domain. The model uses equations of motion based on the finite element method for the moving masses on the beam and employs the Runge-Kutta numerical solution within the state space. The proposed system consists of three successive moving masses positioned at even intervals along the beam. To assess its effectiveness, the method is tested on two examples: a simply supported beam and a continuous beam, each having three scenarios to simulate the presence of one or multiple cracks. Additionally, another example investigates the influence of mass speed, spacing between masses, and noise effect. The outcomes showcase the method's effectiveness and efficiency in localizing crack, even in the presence of noise effect in 1%, 5% and 20%.

Study on ERP Detection Algorithm Using SVM with wavelet feature vector (웨이블릿 특징 벡터 기반 SVM을 이용한 ERP 검출 알고리즘에 관한 연구)

  • Lee, Young-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • In this study we performed the experiment to detect the ERP using SVM with wavelet features. The EEG signal that is generated visual stimulated ERP database in SCCN applied for the experiment. The feature vectors for experiment are categorized frequency and continuous wavelet- based vectors. In experimental results, the detection rate of SVM with wavelet feature vectors improved above 10% comparing with frequency- based feature vector. Based on the experimental results we analyzed the relation between the activity degree of the ERP and the band split characteristics of the ERP by wavelet transform.

Research for Time Variation of $C_{20}$ Using GRACE and SLR Measurements (GRACE 및 SLR 자료를 이용한 $C_{20}$의 시계열 변화 연구)

  • Huang, He;Yun, Hong-Sic;Lee, Dong-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.513-518
    • /
    • 2008
  • The research of global-scale mass redistribution and it changed by Earth gravity filed variation observations, including Earth's oblateness $J_2$(also called low degree spherical harmonic coefficient $C_{20}$), is in continuous progress. Recently, the comparative analysis of geodetic observation SLR can be made by the development of GRACE and other time-variable gravity measurements. In this study, $C_{20}$ time series changes in the value of comparative analysis was got by GRACE monthly Gravity filed model (CSR RL04) for the period April 2002 to May 2008. And comparative analysis the harmonic coefficients of $C_{20}$ was obtained from SLR observations. Signal analysis for two time-series data was made by wavelet transform, CWT(continuous wavelet transform), XWT(cross wavelet transform) and WTC(wavelet coherence) methods. The results indicate that GRACE and SLR values for $C_{20}$ had both decreasing trend, as well as SLR data represent the annual frequencies, and GRACE was semiannual variations. In addition, the results of GRACE and SLR had a strong correlation with the XWT and WTC in an annual cycle.

Fault Diagnosis for Rotating Machinery with Clearance using HHT (HHT를 이용한 간극이 있는 회전체의 고장진단)

  • Lee, Seung-Mock;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.895-902
    • /
    • 2007
  • Rotating machinery has two typical faults with clearance, one is partial rub and the other is looseness. Due to these faults, non-linear and non-stationary signals are occurred. Therefore, time-frequency analysis is necessary for exact fault diagnosis of rotating machinery. In this paper newly developed time-frequency analysis method, HHT(Hilbert-Huang Transform) is applied to fault diagnosis and compared with other method of FFT, SFFT and CWT. The results show that HHT can represent better resolution than any other method. Consequently, the faults of rotating machinery are diagnosed efficiently by using HHT.

  • PDF

A Study on the Determination of Slip-up Time for Slip-Form System using Surface Wave Velocity (표면파 속도를 이용한 슬립폼 시스템 상승 시기 결정에 관한 연구)

  • Kim, Heeseok;Kim, Young Jin;Chin, Won Jong;Yoon, Hyejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.483-492
    • /
    • 2012
  • The early setting time of concrete is an important factor determining the slip up velocity of the slip-form system. Accordingly, need is for a technique evaluating the early setting time in order to secure the safety of the slip-form system and the construction quality of concrete. This paper intends to estimate the early setting time by evaluating the setting degree of concrete using surface wave velocity so as to determine the slip up time of the slip-form system. Penetration resistance test and compressive strength test are performed first to clarify the relationship between the early setting time of concrete and the compressive strength. Then, compressive strength test and ultrasonic wave test are conducted to examine the relation between the compressive strength and the surface wave velocity. Continuous wavelet transform is adopted to measure the surface wave velocity. Numerical analysis is carried out to demonstrate the appropriateness of the application of continuous wavelet transform. Based on these results, the propagation velocity of the surface wave required for the slip up of slip-form system is suggested. Finally, a reduced model test of the slip-form system is conducted to verify the feasibility of the proposed surface wave velocity for the determination of th slip up velocity.

Spanwise coherent structure of wind turbulence and induced pressure on rectangular cylinders

  • Le, Thai-Hoa;Matsumoto, Masaru;Shirato, Hiromichi
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.441-455
    • /
    • 2009
  • Studying the spatial distribution in coherent fields such as turbulence and turbulence-induced force is important to model and evaluate turbulence-induced forces and response of structures in the turbulent flows. Turbulence field-based coherence function is commonly used for the spatial distribution characteristic of the turbulence-induced forces in the frequency domain so far. This paper will focus to study spectral coherent structure of the turbulence and induced forces in not only the frequency domain using conventional Fourier transform-based coherence, but also temporo-spectral coherence one in the time-frequency plane thanks to wavelet transform-based coherence for better understanding of the turbulence and force coherences and their spatial distributions. Effects of spanwise separations, bluff body flow, flow conditions and Karman vortex on coherent structures of the turbulence and induced pressure, comparison between turbulence and pressure coherences as well as intermittency of the coherent structure in the time-frequency plane will be investigated here. Some new findings are that not only the force coherence is higher than the turbulence coherence, the coherences of turbulence and forces depend on the spanwise separation as previous studies, but also the coherent structures of turbulence and forces relate to the ongoing turbulence flow and bluff body flow, moreover, intermittency in the time domain and low spectral band is considered as the nature of the coherent structure. Simultaneous measurements of the surface pressure and turbulence have been carried out on some typical rectangular cylinders with slenderness ratios B/D=1 (without and with splitter plate) and B/D=5 under the artificial turbulent flows in the wind tunnel.

CWT-Based Method for Identifying the Location of the Impact Source in Buried Pipes (연속웨이브렛 변환을 이용한 충격음 위치 규명)

  • Kim, Eui-Youl;Kim, Min-Su;Lee, Sang-Kwon;Koh, Jae-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1555-1565
    • /
    • 2010
  • This paper presents a new method for indentifying the location of impact source in a buried duct. In a gas pipeline, the problem of leakage occurs due to the mechanical load exerted by construction equipment. Such leakage can cause catastrophic disasters in gas supply industries. Generally, the cross-correlation method has been used for indentifying the location of impact source in a pipeline. Since this method involves the use of the dispersive acoustic wave, it derives an amount of error in process of estimating the time delay between acoustic sensors. The object of this paper is to estimate the time delay in the arrival of the direct wave by using the wavelet transform instead of the dispersive wave. The wavelet transform based method gives more accurate estimates of the impact location than the cross-correlation method does. This method is successfully used to identify the location of impact force in an actual buried gas duct.