• Title/Summary/Keyword: Continuous torque

Search Result 86, Processing Time 0.025 seconds

Detection and Identification of CMG Faults based on the Gyro Sensor Data (자이로 센서 정보 기반 CMG 고장 진단 및 식별)

  • Lee, Jung-Hyung;Lee, Hun-Jo;Lee, Jun-Yong;Oh, Hwa-Suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2019
  • Control moment gyro (CMG) employed as satellite actuators, generates a large torque through the steering of its gimbals. Although each gimbal holds a high-speed rotating wheel, the wheel imbalances induces disturbance and degrades the satellite control quality. Therefore, the disturbances ought to be detected and identified as a precaution against actuator faults. Among the method used in detecting disturbances is the state observers. In this paper, we apply a continuous second order sliding mode observer to detect single disturbances/faults in CMGs. Verification of the algorithm is also done on the hardware satellite simulator where four CMGs are installed.

The Effect of adding Hip Abductor Strengthening to Conventional Rehabilitation on Muscular Strength and Physical Function following Total Knee Replacement

  • Kim, San-Han;Park, Hye-Kang;Lee, Wan-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.1
    • /
    • pp.16-23
    • /
    • 2022
  • Objective: This study aimed to investigate the effect of adding hip abductor strengthening to conventional rehabilitation on muscle strength and physical function following total knee replacement (TKR) for knee osteoarthritis. Design: Randomized controlled trial Methods: Thirty-five participants were randomly allocated to exercise groups I (n=18) and II (n=17). Group I underwent hip abductor training and conventional rehabilitation for 30 min per day, 5 days per week for 4 weeks. Group II underwent conventional rehabilitation for 30 min per day, 5 days per week for 4 weeks. The participants in both groups also received continuous passive motion therapy for 15 min per day, 5 days per week for 4 weeks. To investigate the effect of the intervention, the Biodex dynamometer was used to measure the peak torque of both knee extensors and hip abductors. This study used the Knee Outcome Survey-Activities of Daily Living Scale (KOS-ADLS) to assess physical function, as well as the figure-of-8 walk test (F8W) and the stair climb test (SCT). Results: According to the interventions, exercise groups I and II showed significantly improved muscle strength and KOS-ADLS, F8W, and SCT scores (p<0.001). Compared with that of exercise group II, exercise group I showed significantly improved hip abductor strength (p<0.001) and KOS-ADLS, F8W, and SCT scores (p<0.05). Conclusions: The results of this study indicate that the combination of hip abductor strengthening and conventional rehabilitation is an effective exercise method to increase hip abductor muscle strength and physical function after TKR.

Study on the Failure Diagnosis of Robot Joints Using Machine Learning (기계학습을 이용한 로봇 관절부 고장진단에 대한 연구)

  • Mi Jin Kim;Kyo Mun Ku;Jae Hong Shim;Hyo Young Kim;Kihyun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.113-118
    • /
    • 2023
  • Maintenance of semiconductor equipment processes is crucial for the continuous growth of the semiconductor market. The process must always be upheld in optimal condition to ensure a smooth supply of numerous parts. Additionally, it is imperative to monitor the status of the robots that play a central role in the process. Just as many senses of organs judge a person's body condition, robots also have numerous sensors that play a role, and like human joints, they can detect the condition first in the joints, which are the driving parts of the robot. Therefore, a normal state test bed and an abnormal state test bed using an aging reducer were constructed by simulating the joint, which is the driving part of the robot. Various sensors such as vibration, torque, encoder, and temperature were attached to accurately diagnose the robot's failure, and the test bed was built with an integrated system to collect and control data simultaneously in real-time. After configuring the user screen and building a database based on the collected data, the characteristic values of normal and abnormal data were analyzed, and machine learning was performed using the KNN (K-Nearest Neighbors) machine learning algorithm. This approach yielded an impressive 94% accuracy in failure diagnosis, underscoring the reliability of both the test bed and the data it produced.

  • PDF

Human-Powered Generator designed for Sustainable Driving (고출력 지속이 가능한 인체 구동 방식의 자가 발전기 개발)

  • Lim, Yoon-Ho;Yang, Yoonseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.135-142
    • /
    • 2015
  • Human-powered self-generating devices have been attractive with its operation characteristic independent from outer environment such as weather condition and wind speed. However, conventional self-generators have low electric power output due to their weakly-coupled electromagnetic structure. More importantly, rotary crank motion which is usually adopted by conventional self-generator to generate electricity requires specific skeletal muscles to maintain large torque circular motion and consequently, causes fatigue on those muscles before it can generate enough amount of electricity for any practical application. Without improvement in electric power output and usability, the human-powered self-generator could not be used in everyday life. This study aims to develop a human-powered self-generator which realized a strong electromagnetic coupling in a closed-loop tubular structure (hula-hoop shape) for easy and steady long-term driving as well as larger electric output. The performance and usability of the developed human-powered generator is verified through experimental comparison with a commercial one. Additionally, human workload which is a key element of a human-powered generator but not often considered elsewhere, is estimated based on metabolic energy expenditure measured respiratory gas analyzer. Further study will focus on output and portability enhancement, which can contribute to the continuous power supply of mobile equipments.

FES Exercise Program for Independent Paraplegic Walking (하반신 마비환자의 FES 독립보행을 위한 근육 강화 프로그램)

  • Khang, Seon-Hwa;Khang, Gon;Choi, Hyun-Joo;Kim, Jong-Moon;Chong, Soon-Yeol;Chung, Jin-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.69-80
    • /
    • 1998
  • This research was designed to investigate how the exercise program affects paraplegic standing and walking employing functional electrical stimulation(FES). Emphasis was also given to fatigue of major lower extremity muscles induced by different types of electrical stimulation. We applied continuous and intermittent rectangular pulse trains to quadriceps of 10 normal subjects and 4 complete paraplegic patients. The frequencies were 20Hz and 80Hz, and the knee angle was fixed at 90$^{\circ}$and 150$^{\circ}$to investigate how muscle fatigue is related to muscle length. The knee extensor torque was measured and monitored. We have been training quadriceps and gastrocnemius of a male paraplegic patient by means of electrical stimulation for the past two year. FES standing was initiated when the knee extensors became strong enough to support the body weight, and then the patient started FES walking utilizing parallel bars and a walker. We used an 8-channel constant-voltage stimulator and surface electrodes. The experimental results indicated that paralyzed muscles fatigued rapidly around the optimal length contrary to normal muscles and confirmed that low frequency and intermittent stimulation delayed fatigue. Our exercise program increased muscle force by approximately 10 folds and decreased the fatigue index to half of the initial value. In addition, the exercise enabled the patient to voluntarily lift each leg up to 10cm, which was of great help to the swing phase of FES walking. Both muscle force and resistance to fatigue were significantly enhanced right after the exercise was applied every day instead of 6 days a week. Up to date, the patient can walk for more than two and half minutes at 10m/min while controlling the on/off time of the stimulator by pushing the toggle switch attached to the walker handle.

  • PDF

EFFECT OF CROSS-SECTIONAL AREA OF 6 NICKEL-TITANIUM ROTARY INSTRUMENTS ON THE FATIGUE FRACTURE UNDER CYCLIC FLEXURAL STRESS: A FRACTOGRAPHIC ANALYSIS (반복 굽힘 스트레스 하에서 전동식 니켈-티타늄 파일의 단면적의 크기가 피로파절에 미치는 영향 : 파절역학 분석)

  • Hwang, Soo-Youn;Oh, So-Ram;Lee, Yoon;Lim, Sang-Min;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.424-429
    • /
    • 2009
  • This study aimed to assess the influence of different cross-sectional area on the cyclic fatigue fracture of Ni-Ti rotary files using a fatigue tester incorporating cyclical axial movement. Six brands of Ni-Ti rotary files (ISO 30 size with. 04 taper) of 10 each were tested: Alpha system (KOMET), HeroShaper (MicroMega), K3 (SybronEndo), Mtwo (VDW), NRT (Mani), and ProFile (Dentsply). A fatigue-tester (Denbotix) was designed to allow cyclic tension and compressive stress on the tip of the instrument. Each file was mounted on a torque controlled motor (Aseptico) using a 1:20 reduction contra-angle and was rotated at 300 rpm with a continuous, 6 mm axial oscillating motion inside an artificial steel canal. The canal had a $60^{\circ}$ angle and a 5 mm radius of curvature. Instrument fracture was visually detected and the time until fracture was recorded by a digital stop watch. The data were analyzed statistically. Fractographic analysis of all fractured surfaces was performed to determine the fracture modes using a scanning electron microscope. Cross-sectional area at 3 mm from the tip of 3 unused Ni-Ti instruments for each group was calculated using Image-Pro Plus (Imagej 1.34n, NIH). Results showed that NRT and ProFile had significantly longer time to fracture compared to the other groups (p < .05). The cross-sectional area was not significantly associated with fatigue resistance. Fractographycally, all fractured surfaces demonstrated a combination of ductile and brittle fracture. In conclusion, there was no significant relationship between fatigue resistance and the cross-sectional area of Ni-Ti instruments under experimental conditions.