• Title/Summary/Keyword: Continuous soil column

Search Result 39, Processing Time 0.022 seconds

Visualization of bulging development of geosynthetic-encased stone column

  • Zhou, Yang;Kong, Gangqiang;Peng, Huaifeng;Li, Chunhong;Qin, Hongyu
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.329-337
    • /
    • 2019
  • This paper presents an experimental investigation about visualization of bulging development of geosynthetic-encased stone column (GESC) based on the digital image correlation (DIC) technique and transparent soil. Visual model tests on GESC and ordinary stone column (OSC) were carried out. In order to delete the warping effect resulting from transparent soil and experiment setup, a modification for experiment results was performed. The bulging development process of the GESC and the displacement field of the surrounding soil were measured. By comparing with the existing experimental and theoretical results, it demonstrates that the model test system developed for studying the continuous bulging development of GESC is suitable. The current test results show that the bulging depth of GESC ranges from 1.05 to 1.40 times the diameter of GESC. The influence depth of GESC bulging on surrounding soil displacement is 0~3 the times diameter of GESC.

Nitrogen Removal from Synthetic Domestic Wastewater Using the Soil Column (토양컬럼을 이용한 합성하수 중의 질소제거)

  • Cheong, Kyung-Hoon;Lim, Byung-Gab;Choi, Hyung-Il;Park, Sang-Ill;Moon, Ok-Ran
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.707-714
    • /
    • 2007
  • A laboratory experiment was performed to investigate nitrogen removal by the soil column. The addition of 20% waste oyster shell to the soil accelerated nitrification in soil column. The $NO_3^--N$ concentration in the effluent decreased with the decrease of HRT(Hydraulic Retention Time). When methanol and glucose added as carbon sources, the average removal rates of T-N(Total Nitrogen) were 82% and 77.9%, respectively. The $NO_3^--N$ removal by methanol supplementation in soil column can likely be attributed to denitrification. In continuous removal of nitrogen using the soil column, the COD(Chemical Oxygen Demand) and $NH_4^+-N$ removed simultaneously in organic matter decomposing column. The greater part of $NH_4^+-N$ was nitrified by the percolated through nitrification column, and the little $NH_4^+-N$ was found in the effluent. The T-N of 87.4% removed at HRT of 36 hrs in denitrfication column. Because of nitrified effluents from nitrification column are low in carbonaceous matter, an external source of carbon is required.

A Study on the Utilization of Organic Mixed Soil as Earthwork Materials (유기질 혼합토의 토공재로서의 활용에 관한 연구)

  • Park, Heung-Gyu;Koo, Je-Min
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.29-35
    • /
    • 2002
  • In order to establish the applicability of organic soil as Earthwork Materials, this research conducts a battery of laboratory tests using two kinds of test materials. The test material A, a mixture of sand and organic soil, and the test material B, a mixture of granite soil and organic soil varying the proportion of organic soil through 5%, 10%, 20%, 30%, 40%, and 50% are used. Continuous column leaching tests of the test materials A and B indicate that their COD value is substantially smaller than that of pure organic soil, the COD value of the early leached water slightly exceeds the standard level for leached water. The COD value after 4 hours of leaching becomes very small. The mixed soil of sand and organic soil is considered usable as embankment materials when the proportion of organic soil is up to 40% with the corresponding concentration ratio of organic contents is less than 11.3%. Similarly, the mixed soil of granite soil and organic soil is considered usable as earthwork materials when the proportion of organic soil is less than 30% with the corresponding concentration ratio of organic contents is less than 16.4%.

  • PDF

Analysis of rainfall infiltration characteristics for unsaturated soils using a column test equipment (모형실험장치를 이용한 불포화토의 강우 침투특성 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.736-742
    • /
    • 2010
  • This study was conducted to characterize on the relationships of rainfall intensity and infiltration rate of rainfall dependent on unit weight change in the gneissic weathered soil by a column test equipment. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at regular time intervals. Rainfall conditions including continuous rainfall and repeated rainfall were selected in order to know the effect of antecedent rainfall. In the condition of rainfall intensity 20mm/h and the unit weights of soil as $1.35g/cm^3$, $1.55g/cm^3$ and $1.61g/cm^3$, average rainfall infiltration rate was $2.814{\times}10^{-3}cm/sec$, $1.969{\times}10^{-3}cm/sec$ and $1.252{\times}10^{-3}cm/sec$ respectively. The higher rainfall intensity and lower unit weight of soil, the faster average infiltration rate. Overflow in the column was happened except rainfall condition of rainfall intensity 20mm and soil unit weight $1.35g/cm^3$. Increasing the soil unit weight, overflowed water was increased and occurrence time was faster.

  • PDF

Assessing pollutants' migration through saturated soil column

  • Smita Bhushan Patil;Hemant Sharad Chore;Vishwas Abhimanyu Sawant
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.95-106
    • /
    • 2023
  • In the developing country like India, groundwater is the main sources for household, irrigation and industrial use. Its contamination poses hydro-geological and environmental concern. The hazardous waste sites such as landfills can lead to contamination of ground water. The contaminants existing at such sites can eventually find ingress down through the soil and into the groundwater in case of leakage. It is necessary to understand the process of migration of pollutants through sub-surface porous medium for avoiding health risks. On this backdrop, the present paper investigates the behavior of pollutants' migration through porous media. The laboratory experiments were carried out on a soil-column model that represents porous media. Two different types of soils (standard sand and red soil) were considered as the media. Further, two different solutes, i.e., non-reactive and reactive, were used. The experimental results are simulated through numerical modeling. The percentage variation in the experimental and numerical results is found to be in the range of 0.75- 11.23 % and 0.84 - 1.26% in case of standard sand and red soil, respectively. While a close agreement is observed in most of the breakthrough curves obtained experimentally and numerically, good agreement is seen in either result in one case.

Effects of Paper Mill Sludge in submerged Soil (제지(製紙)슬러지의 답토양(畓土壤) 시용효과(施用效果))

  • Choi, Jong Woo;Jo, Jeong Rye;Lee, Kyu Seung;Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.2
    • /
    • pp.187-193
    • /
    • 1992
  • The effects of continuous restoration of sludge into the reclamating paddy soil and leaching test of sludge components by soil column were investigated. 1. The contents of nitrogen, phosphorus, potassium, C.E.C. and organic matter(O.M.) were increased in/on the paddy soil treated with paper mill sludge than non-treated. 2. Humic layer depth recognized by color showed the non-treated(10 cm), second year(15 cm) and third year(20 cm), respectively. 3. The effects of sludge treatment showed in the contents of O.M. such as non-treatment(0.9 %) < second year(1.39 %) < third year(1.75 %) in 10 cm depth. 4. All components in soil tested with column were increased by holding capacity of sludge, and the contamination effects of soil and ground water were not found by leaching test.

  • PDF

Infiltration and Water Redistribution in Sandy Soil: Analysis Using Deep Learning-Based Soil Moisture Prediction (딥러닝 기반 함수비 예측을 이용한 사질토 지반 침투 및 수분 재분포 분석)

  • Eun Soo Jeong;Tae Ho Bong;Jung Il Seo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.490-501
    • /
    • 2023
  • Laboratory column tests were conducted to analyze infiltration and water redistribution processes on the basis of rainfall. To efficiently measure moisture content within soil layers, this research developed a predictive model grounded in a convolutional neural network (CNN), a deep learning technique. The digital images obtained during the column tests were incorporated into the established CNN. The moisture content of each soil layer over time was effectively measured. The measured values were also in relatively good agreement with the moisture content determined using the moisture sensors installed for each soil layer. The use of CNN enabled a comprehensive understanding of continuous moisture distribution within the soil layers, as well as the infiltration process according to soil texture and initial moisture content conditions.

Transport of chloride through saturated soil column: An experimental study

  • Patil, S.B.;Chore, H.S.
    • Advances in environmental research
    • /
    • v.4 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The groundwater is a very important part of the environment and must be protected for the benefit of the present and future generation. The contamination of soil and groundwater by chemicals has become an increasing concern in the recent past. These chemicals enter the groundwater system by a wide variety of mechanisms, including accidental spills, land disposal of domestic and industrial wastes and application of agricultural fertilizers. Once introduced into an aquifer, these contaminants will be transported by flowing groundwater and may degrade water quality at nearby wells and streams. For improving the management and protection of groundwater resources, it is important to first understand the various processes that control the transport of contaminants in groundwater. Predictions of the fate of groundwater contaminants can be made to assess the effect of these chemicals on local water resources and to evaluate the effectiveness of remedial actions. In this study, an attempt has been made to investigate the behaviour of solute transport through porous media using laboratory experiments. Sodium chloride was used as a conservative chemical in the experiment. During the experiment, pulse boundary condition and continuous boundary conditions were used. Experimental results have been presented for conservative solute transport in the sand. The pattern of the break through curve remains almost same in all the cases of varying flow rate and initial concentration of conservative chemical.

The Importance of Reaction Mechanisms in Interpreting the Arsenic Reactive Transport of FeS-coated Sand Column

  • Han, Young-Soo;Demond, Avery H.;Hayes, Kim F.
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • FeS, as a natural reduced iron mineral, has been recognized to be a viable reactive material for As(III) sequestration in natural and engineered systems. In this study, FeS-coated sand packed columns were tested to evaluate the As(III) removal capacities under anaerobic conditions at pH 5, 7 and 9. The column obtained As(III) removal capacity was then compared with the capacity result obtained from batch reactors. In the comparison, two different approaches were used. The first approach was used the total As(III) removal capacity which method was proved to be useful for interpreting pH 5 system. The second approach was used to consider sorption non-linearity and proved to be useful for interpreting the pH 9. The results demonstrated that a mechanistic understanding of the different removal processes at different pH conditions is important to interpret the column experimental results. At pH 5, where the precipitation of arsenic sulfide plays the major role in the removal of arsenic, the column shows a greater removal efficiency than the batch system due to the continuous dissolution of sulfide and precipitation of arsenic sulfide. At pH 9, where adsorption mainly governs the arsenic removal, the sorption nonlinearity should be considered in the estimation of the column capacity. This study highlighted the importance of understanding reaction mechanism to predict column performance using batch-obtained experimental results.

Potential Environmental Influences in Soil by Accidental Fluorine (F) Leakage, Using Leaching Test (용출시험을 통한 불산 누출사고지역의 토양 내 불소(F)의 거동특성)

  • Kim, Doyoung;Lee, Junseok;Kwon, Eunhye;Lee, Hyun A;Yoon, Hye-On;Lee, Sanghoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.234-239
    • /
    • 2015
  • Various leaching tests were applied to the soil affected by accidental leakage of HF in an industrial area in Korea. Three different leaching methods including pH-stat, continuous batch leaching, and column tests were adopted to assess leaching characteristics and mobility of fluorine(F) in soil and the potential risks to ecosystem. Both natural and spiked samples were used for the leaching tests. F concentrations in the batch tests increased by leaching rapidly in the early stage of leaching and then maintained rather constant levels. Column leaching test also show similar result to that of the batch test. pH also controlled the leaching behavior of the soil. With increasing pH, more F was released in the pH-stat test. This is mainly due to the competition and exchange with hydroxyl ions, as pH increase to the alkaline range. Most of the F released by the accident seem to have removed in the very early stage of leaching, whereas some natural proportion from soil minerals are thought to have been released very slowly. Therefore, little F released during the accident remained, based on the results of this study on the samples after two years of the accident. We could conclude that soil contaminated by external effects such as chemical accidents should be managed immediately, especially with F.