• Title/Summary/Keyword: Continuous active motion

Search Result 23, Processing Time 0.026 seconds

The Effects of Active Exercise Program using Sling on the Pain and Balance Following Total Knee Replacement (슬링을 이용한 능동 운동프로그램이 무릎 관절 전치환술 환자의 통증과 균형에 미치는 영향)

  • Ryu, Je-Ju;Jeong, Beom-Cheol;Yoo, Kyung-Tae
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.174-183
    • /
    • 2022
  • This study was conducted to investigate the effect of the active exercise program using sling on the pain and balance of total knee replacement patients. Subjects were 20 patients who received total knee replacement and are hospitalized, 10 patients in each group were randomly assigned to a group (CPM group) that applied only CPM (Continuous passive motion) and a group (CSG) that combined CPM with a active exercise program using sling. CG was performed CPM 5 days a week, CSG performed CPM 2 days a week and a active exercise program using sling 3 days a week, and each intervention was performed for 40 minutes a day for a total of 4 weeks. Pain was evaluated using VAS (Visual analog scale), and balance was measured using BT4 (Balance training 4) to measure C90 area, trace length, and Sway average velocity with eyes open and closed. As a result, there was a significant decrease in pain in both groups, and there was also a significant difference in the amount of change between groups. In balance, all variables except C90 of CG showed significant changes after intervention, and there was a significant difference between C90 and Vel with eyes closed in the amount of change between groups. Therefore, we believe that CPM and active exercise program using sling are effective interventions to reduce pain and improve balance in total knee replacement patients.

Frequency Dependent Damping for a Nonlinear Vehicle Active Suspension System (비선형 차량능동현가시스템의 주파수 감응감쇠 특성연구)

  • Kim, J.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.45-54
    • /
    • 2011
  • A vehicle suspension system performs two functions, the ride quality and the stability, which conflict with each other. Among the various suspension systems, an active suspension system has an external energy source, from which energy is always supplied to the system for continuous control of vehicle motion. In the process of the linearization for the nonlinear active suspension system, the frequency dependent damping method is used for the exact modelling to the real model. The pressure control valve which is controlled by proportional solenoid is the most important component in the active suspension system. The pressure control valve has the dynamic characteristics with 1st order delay. Therefore, It's necessary to adopt the lead compensator to compensate the dynamics of the pressure control valve. The sampling time is also important factor for the control performances. The sampling time value is proposed to satisfy the system performances. After the modelling and simulation for the pressure control valve and vehicle dynamic, the performances of the vehicle ride quality and the stability are enhanced.

Development of a Hydrostatic Guideway Driven by the Linear Motor (리니어모터를 이용한 초정밀 유정압안내면 개발)

  • 박천홍;오윤진;황주호;이득우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.139-144
    • /
    • 2004
  • In order to discuss the availability of hydrostatic guideways driven by the coreless linear motor to ultra precision machine tools, a prototype of guideway is designed and tested in this research. A coreless linear DC motor with the continuous force of 156 N and a laser scale with the resolution of 0.01 ${\mu}{\textrm}{m}$ are used as the feeding system. The experiments are performed on the static stuffiness, motion accuracy, positioning accuracy, microstep response and variation of velocity. The guideway has the infinite axial stillness within 50 N of applied load, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ${\mu}{\textrm}{m}$ of linear motion error and 0.1 arcsec of angular motion error are acquired. The guideway also has 0.21 ${\mu}{\textrm}{m}$ of positioning error and 0.09 ${\mu}{\textrm}{m}$ of repeatability, and it shows the stable response against the 0.01 ${\mu}{\textrm}{m}$ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is confirmed that the hydrostatic guideway driven by the coreless linear motor is very useful fur the ultra precision machine tools.

Design of path tracking controller for mobile robot

  • Lee, Joo-Ho;Seo, Sam-Jun;Seo, Ho-Joon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.464-467
    • /
    • 1995
  • Autonomous Mobile Robot(AMR) is a field of study which is under active research along with rapid development of the engineering technology. The main reasons for the high interest in AMR are because of its ability to change work space freely and its capability to replace human being for difficult and dangerous jobs. Also the fact that AMR provides a variety of research fields, such as path planning, navigation algorithm, sensor fusion, image processing, and controller design is part of the reason for its popularity. But relatively few researches are concerned with controller. So in this paper, a control strategy of mobile robot with nonholonomic constraint for tracking ordered discontinuous motion is proposed. The proposed control strategy has been designed as a state feedback shape to allow the AMR to obtain continuous velocity and track the path which is composed of discontinuous motions. In order to design such controller, 3 states have been reduced to 2 states through coordinate projection. These ideas are tested for validity through simulation and simulation result is compared with experiments result.

  • PDF

Physical Therapy and Rehabilitation of Complex Regional Pain Syndrome in Shoulder Prosthesis

  • Celik, Derya;Demirhan, Mehmet
    • The Korean Journal of Pain
    • /
    • v.23 no.4
    • /
    • pp.258-261
    • /
    • 2010
  • We report a 66-year-old woman with complex regional pain syndrome (CRPS) 1 treated with combined medical and active physical therapy. She was diagnosed with CRPS 1 following partial shoulder prosthesis due to proximal humerus fracture. Despite continuous medication and physical therapy, there was no improvement in her pain and functional outcome. Her overall pain was decreased by stellate ganglion block 3 times in two weeks conducted during the second month of the follow-up period. Following the ganglion blockades, pain and the other symptoms were decreased intermittently but range of motion (ROM) and functional status were not satisfied as much as expected. After the third month of follow-up, her passive and active ROM of the shoulder joint was increased after application of manipulation under general anesthesia. In conclusion, because CRPS 1 remains one of the most difficult pain syndromes, early diagnosis and treatment are important to have adequate functional results from physical therapy. Manipulation under general anesthesia may be an additional effective treatment tool to obtain functional improvement in some patients diagnosed with CRPS 1.

Shipboard Active Phased Array Antenna System for Satellite Communications (위성 통신용 선박 탑재 능동 위상배열 안테나 시스템)

  • 전순익;채종석;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1089-1097
    • /
    • 2002
  • In this paper, the novel shipboard Active Phased Array Antenna(APAA) system for maritime mobile satellite communications is introduced. The antenna uses novel technologies like wide range hybrid tracking, single antenna elements with both of Rx and Tx, asymmetrical array structure, interference isolation between Rx and Tx, and error correction method from frequency scan effect. The antenna has single aperture for both of Rx and Tx with 32 $\times$ 4 two-dimensional array. The antenna has two beams. Its frequencies are 7.25 ~ 7.75 GHz for Rx and 7.9 ~ 8.4 GHz for Tx. The antenna gains are 35.4 dBi for Rx and 35.7 dBi for Tx, those are 54 % of efficiency. The electrically steering ranges are $\pm$35$^{\circ}$ of elevation direction and $\pm$4$^{\circ}$ of azimuth direction. The mechanical control ranges at hybrid tracking capability are continuous 360$^{\circ}$ of azimuth direction and $\pm$10$^{\circ}$ of elevation direction. The antenna has 2.2$^{\circ}$ of 3 dB beamwidth, -14 dB of sidelobe level, and 21 dB of cross-pol suppression. The antenna performance was measured by near field measurement set. Its system performance was tested on the ship motion simulator and with the satellite transponder simulator. The test result showed that its tracking error was within -3 dB from its peak gain under motion condition. The antenna system was tested by real modulated Direct Broadcasting Satellite(DBS) signals to check its communication processing function.

Current Concepts in the Mandibular Condyle Fracture Management Part II: Open Reduction Versus Closed Reduction

  • Choi, Kang-Young;Yang, Jung-Dug;Chung, Ho-Yun;Cho, Byung-Chae
    • Archives of Plastic Surgery
    • /
    • v.39 no.4
    • /
    • pp.301-308
    • /
    • 2012
  • In the treatment of mandibular condyle fracture, conservative treatment using closed reduction or surgical treatment using open reduction can be used. Management of mandibular condylar fractures remains a source of ongoing controversy in oral and maxillofacial trauma. For each type of condylar fracture,the treatment method must be chosen taking into consideration the presence of teeth, fracture height, patient'sadaptation, patient's masticatory system, disturbance of occlusal function, and deviation of the mandible. In the past, closed reduction with concomitant active physical therapy conducted after intermaxillary fixation during the recovery period had been mainly used, but in recent years, open treatment of condylar fractures with rigid internal fixation has become more common. The objective of this review was to evaluate the main variables that determine the choice of an open or closed method for treatment of condylar fractures, identifying their indications, advantages, and disadvantages, and to appraise the current evidence regarding the effectiveness of interventions that are used in the management of fractures of the mandibular condyle.

Analysis of Kinematic Factors between Success and Failure of Free Aerial Cartwheel on the Balance Beam (평균대 한발 몸 펴 옆 공중돌기의 성패에 따른 운동학적 요인 분석)

  • Jung, Choong Min;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.24-30
    • /
    • 2022
  • Objective: The purpose of this study was to determine the factors of successful and unsuccessful movements through the analysis of kinematics and muscle activity of the Free Aerial Cartwheel on the balance beam. Method: Subjects (Age: 22.8 ± 2.4 yrs., Height: 158.7 ± 5.0 cm, Body mass: 54.1 ± 6.4 kg, Career: 13 ± 2.4 yrs.) who were currently active as female gymnasts participated in the study. They had no history of surgical treatment within 3 months. Subject criteria included more than 10 years of professional experience in college and professional level of gymnastics and the ability to conduct the Free Aerial Cartwheel on the Balance Beam. Each subject performed 10 times of Free Aerial Cartwheel on the balance beam. One successful trial and one unsuccessful trial (failure) among 10 trials were selected for the comparison. Results: It was found that longer time required in case of unsuccessful trial when performing the Free Aerial Cartwheel on the balance beam compared with successful trial. It is expected to be the result of movement in the last landing section (i.e. phase 5). In addition, it was found that the center of gravity of the body descends at a high speed to perform the jump (i.e. phase 2) in order to obtain a sufficient jumping height when the movement is successful while the knee joint is rapidly extended to perform a jump when movement fails. In the single landing section after the jump (i.e. phase 4), if the ankle joint rapidly dorsiflexed after take-off and the hip joint rapidly flexed, so landing was not successful. Conversely, in a successful landing movement, muscle activity of the biceps femoris was greatly activated resulting no shaking in the last landing section (i.e. phase 5). Conclusion: In order to succeed in this movement, it is necessary to perform a strong jump after rapidly descending the center of gravity of the body using the force of the biceps femoris muscle. Further improvement of the skills on the balance beam requires the analysis of the game-like situation with continuous research on kinematic and kinematic analysis of various techniques, jumps, turns, etc.

A Study on the direction of Media Literacy education based on the development of animation (애니메이션 제작을 통한 미디어 리터러시 교육 방향 연구)

  • Park, HeeHyeon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • The purpose of this research was to develop the method of media literacy education program based on animation production for the 21 century student. A total of four stages of educational programs were constructed by linking the media literacy education goals and the animation production process through the previous research. First, Acquisition of animation production tools for enhancing media access capability. Second, Animation production practice stage for strengthening creative production capacity. Third, the development of critical understanding stage for presentation and discussion the results. Forth, social sharing stage to strengthen social communication capacity. For the practical application of the education program, it was produced as an educational model for Hanseo University animation summer camp, and was educated by 79 middle school students in Chungcheong province. Based on this research, students improve an analytical ability and help them become active participants by creating their own animations. In future, it will be needed a continuous research on the development of educational programs using various media.

Active Stabilization for Surge Motion of Moored Vessel in Irregular Head Waves (불규칙 선수파랑 중 계류된 선박의 전후동요 제어)

  • Lee, Sang-Do;Truong, Ngoc Cuong;Xu, Xiao;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.437-444
    • /
    • 2020
  • This study was focused on the stabilization of surge motions of a moored vessel under irregular head seas. A two-point moored vessel shows strong non-linearity even in regular sea, owing to its inherent non-linear restoring force. A long-crested irregular wave is subjected to the vessel system, resulting in more complex nonlinear behavior of the displacement and velocities than in the case of regular waves. Sliding mode control (SMC) is implemented in the moored vessel to control both surge displacement and surge velocity. The SMC can provide a closed-loop system with performance and robustness against parameter uncertainties and disturbances; however, chattering is the main drawback for implementing SMC. The goal of minimizing the chattering and state convergence with accuracy is achieved using a quasi-sliding mode that approximates the discontinuous function via a continuous sigmoid function. Numerical simulations were conducted to validate the effectiveness of the proposed control algorithm.