• Title/Summary/Keyword: Continuous Strength Method

Search Result 249, Processing Time 0.038 seconds

A study on the Continuous Elimination of Inclusions in Al Alloy by Electromagnetic Force (전자기력을 이용한 알루미늄 합금중 개재물의 연속적 제거에 관한 연구)

  • Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.130-136
    • /
    • 2002
  • The growing use of aluminum for castings over the past decade has brought with it the increased scrutiny of component properties. One area that has received much attention is the effect of in inclusions - or impurities particles held in the metal - on casting properties. A new method of electromagnetic separation for removal of inclusions in aluminum alloy melts is proposed. The principle is that as the electromagnetic force induced in metal acts on inclusions due to low electric conductivity, they are moved to the direction opposite to electromagnetic force and can be separated and removed from the melt. Experiments were carried out on A356 melt mixed alumina particles and commercial Al alloys of ADC 10 and 12. In the experiment using A356, it was proved that $Al_2O_3$ particles was separated and removed continuously from matrix melt by electromagnetic force. Based on these results, the continuous separation experiment that used ADC 10, 12 was carried and the cleanliness of melt was assessed by the amount of porosity, hydrogen contents, PoDFA and mechanical properties through tensile test. As the results of analyses, the amount of porosity and hydrogen contents decreased without variation of chemical composition in the specimen that passed the electromagnetic continuous separator. In addition, tensile strength and elongation of this specimen increased by $20{\sim}30%$ because of reduction of inclusions.

Optimum Design of Plane Steel Frame Structures Using Refined Plastic Hinge Analysis and SUMT (개선소성힌지해석과 SUMT를 이용한 평면 강골조의 연속최적설계)

  • Yun, Young Mook;Kang, Moon Myoung;Lee, Mal Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.21-32
    • /
    • 2004
  • In this study, a continuous optimum design model with its application program for plane steel frame structures developed. In the model, the sequential unconstrained minimization technique (SUMT) transforming the nonlinear optimization problem with multidesign variables and constraints into an unconstrained minimization problem and the refined plastic hinge analysis method as one of the most effective second-order inelastic analysis methods for steel frame structures were implemented. The total weight of a steel frame structure was taken as the objective function, and the AISC-LRFD code requirements for the local and member buckling, flexural strength, shear strength, axial strength and size of the cross-sectional shapes of members were used for the derivation of constraint equations. To verify the appropriateness of the present model, the optimum designs of serveral plane steel frame structures subject to vertical and horizontal loads were conducted.

Simulation of the fracture of heterogeneous rock masses based on the enriched numerical manifold method

  • Yuan Wang;Xinyu Liu;Lingfeng Zhou;Qi Dong
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.683-696
    • /
    • 2023
  • The destruction and fracture of rock masses are crucial components in engineering and there is an increasing demand for the study of the influence of rock mass heterogeneity on the safety of engineering projects. The numerical manifold method (NMM) has a unified solution format for continuous and discontinuous problems. In most NMM studies, material homogeneity has been assumed and despite this simplification, fracture mechanics remain complex and simulations are inefficient because of the complicated topology updating operations that are needed after crack propagation. These operations become computationally expensive especially in the cases of heterogeneous materials. In this study, a heterogeneous model algorithm based on stochastic theory was developed and introduced into the NMM. A new fracture algorithm was developed to simulate the rupture zone. The algorithm was validated for the examples of the four-point shear beam and semi-circular bend. Results show that the algorithm can efficiently simulate the rupture zone of heterogeneous rock masses. Heterogeneity has a powerful effect on the macroscopic failure characteristics and uniaxial compressive strength of rock masses. The peak strength of homogeneous material (with heterogeneity or standard deviation of 0) is 2.4 times that of heterogeneous material (with heterogeneity of 11.0). Moreover, the local distribution of parameter values can affect the configuration of rupture zones in rock masses. The local distribution also influences the peak value on the stress-strain curve and the residual strength. The post-peak stress-strain curve envelope from 60 random calculations can be used as an estimate of the strength of engineering rock masses.

Aggregate shape influence on the fracture behaviour of concrete

  • Azevedo, N.Monteiro;Lemos, J.V.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.411-427
    • /
    • 2006
  • The Discrete Element Method, DEM, is increasingly used in fracture studies of non-homogeneous continuous media, such as rock and concrete. A 2D circular rigid DEM formulation, developed to model concrete, has been adopted. A procedure developed to generate aggregate particles with a given aspect ratio and shape is presented. The aggregate particles are modelled with macroparticles formed by a group of circular particles that behave as a rigid body. Uniaxial tensile and compression tests performed with circular and non-circular aggregates, with a given aspect ratio, have shown similar values of fracture toughness when adopting uniform strength and elastic properties for all the contacts. Non-circular aggregate assemblies are shown to have higher fracture toughness when different strength and elastic properties are set for the matrix and for the aggregate/matrix contacts.

Syntheses and Characteristics of Intermolecular Charge-Transfer Complex Dyes (분자간 전하이동형 기능성 색소의 합성과 물성)

  • Kim, Sung Hoon;Lee, Soon Nam;Lim, Yong Jin
    • Textile Coloration and Finishing
    • /
    • v.4 no.1
    • /
    • pp.21-25
    • /
    • 1992
  • The charge-transfer(CT) complexes derived from various donors and acceptors were evaluated as coloring matter. Dyes absorbing light in the region from the visible to the near-infrared wavelengths were synthesized. In order to determine the molar ratio of the donor to the acceptor in the CT complex in the solution, the continuous variational method was applied to each system. A 1:1 correspondence between the donor and the acceptor molecules in the CT complex in the solution is established. Color development properties in paper were examined. The longer the exposure time at constant temperature, the deeper the strength of color in paper. The strength of color at high temperature was decreased, because sublimed CT dyes in paper were migrated out side of paper.

  • PDF

Reliability Analysis of Floating Offshore Structures -structural systems reliability to change in uncertainty of design variables- (부유식 해양구조물의 신뢰성해석 -설계변수의 불확실성 변화에 대한 구조시스템 신뢰성-)

  • Lee, Joo-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.224-231
    • /
    • 1993
  • This paper is concerned with the influence of changes in stochastic parameters of the important resistance variables such as the strength modelling parameter and material and geometric properties, on the system safety level of TLP structures. The effect of parameters governing the post-ultimate behaviour is also addressed. An extended incremental load method is employed for the present study, which has been successfully applied to the system reliability analysis of continuous structures. The Hutton Field TLP and its one variant called herein TLP-B, are chosen as TLP models in this paper. The results of several parameteric studies lead to useful conclusions relating to the importance of reducing uncertainties in strength formulae and relating the importance of component post-ultimate behaviour to the systems reliability of such structures.

  • PDF

Brazing of TiAl and AISI4140 steel using an Ag-Cu-Ti insert metal (Ag-Cu-Ti삽입금속을 이용한 TiAl과 AISI4140 강의 브레이징)

  • 구자명;이원배;김명균;김대업;김영직;정승부
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.45-47
    • /
    • 2004
  • We have investigated the microstructures and the mechanical properties of TiA1/Cerameti1721 (Ag-Cu-Ti insert metal)/AISI4140 joints at 800$^{\circ}C$ for 60 to 300s using induction brazing method. Two continuous reaction layers of AICuTi and AICu$_2$Ti were formed at the interface between the braze and TiAl, whose thickness increased with the brazing time. The braze consisted of Ag-rich, Ti-rich, CuTi and CuTi$_2$ phases. The maximum tensile strength achieved 296MPa, which was 71% of that of TiAl base metal, for the specimen bonded at 800$^{\circ}C$. Further increase of the brazing temperature and time resulted in constant deterioration of its bonding strength due to large amount of brittle IMC.

  • PDF

Improvement of Jc for Ag alloy Sheathed Bi-2223 HTSC Tape (은 합금 시스 Bi-2223 고온초전도 테이프의 임계전류밀도 향상)

  • Jang, H.M.;Oh, S.S.;Ha, D.W.;Ryu, K.S.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1489-1491
    • /
    • 1996
  • The effect of Ag alloy sheath have been investigated in terns of critical current density and mechanical property. Nevertheless the continuous improvement of critical current density($J_c$) of Ag sheathed Bi2223 oxide superconducting wire processed with powder in tube(PIT) method, poor mechanical strength is still considered to be demerits for power application. In this study, we prepared two kinds of Ag- x wt% Cu alloy and pure Ag sheathed Bi2223 superconducting tapes. The hardness and tensile strength of prepared tapes has been measured. Their mechanical propertes were improved by Ag alloying.

  • PDF

A Study on the Characteristics of Beach Sand as Fine aggregate of Concrete (해사의 기본성질과 잔골재로서의 이용 방안에 관한 연구)

  • Hwang, Kyung-Koo;Jun, Hyun-Woo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4265-4273
    • /
    • 1976
  • 1. Fine aggregates of concrete are very important for the construction works and construction cost determination. Most of fine aggregates are from the river sand, but the amount of storage in the river side is steadily decreasing due to continuous construction works. Therefore, another source of fine aggregates is needed to meet increasied demand of sand. 2. Beach sand is a possible source of fine aggregates. But rust of steel bar is caused by CL-chemical of beach sand. Therefore, desalinization of beach sand is requested to get durable reinforced concrete. Economical methods of desalinization are as follows. (a) Flooding and drainage method. (b) Washing of beach sand with water supply and mixing. (c) Spreading of beach sand on the land and leaching by rain water for a few month. 3. Hardening of concrete with beach sand is accelerated due to salt, Thus early stage strength increase leads to make cracks. Also later stage strength decreases and durability becomes worse. By using appropriate admixture, the quality of concrete can be improved.

  • PDF

Applied Technology of FRP Single Pole for Power Distribution Line (배전용 지지물의 FRP 적용 기술)

  • 박기호;조한구;한동희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.79-81
    • /
    • 2000
  • Outdoor insulation of overhead distribution lines with wood, concrete and steel pole has been safety under various environmental conditions including contamination, moisture condensation, rain and lightning overvoltages. In this paper introduce to FRP technology of the power distribution single pole. FRP pole has been used very much as high strength material for insulators because of its high strength and good insulation properties. In addition, FRP pole was made by filament winding method. In a filament winding process, a band of continuous resin-impregnated rovings or monofilaments is wrapped around a rotating mandrel and cured to produce axisymmetric hollow parts.

  • PDF