• Title/Summary/Keyword: Continuous Strength Method

Search Result 249, Processing Time 0.03 seconds

Finite Element Analysis of Shrink Fitting Tolerance and Force of Tile Mold Liner and Fitting Material (타일 금형 라이너 및 끼움재의 열박음 공차 및 결합력에 대한 해석적 연구)

  • Lim, Dong Wook;Lee, Jeong Sik;Jeong, Young Ho;Choi, Doo Sun;Ko, Kang-Ho;Lee, Jeong-woo;Kim, Ji-Hun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.50-56
    • /
    • 2020
  • Ceramic tile is widely used as a floor or interior decoration of buildings. The main processes are raw material blending, molding, drying, firing, etc., and since dimensional and quality stability are very important, they are generally molded by a dry press method. In ceramic tile molds, there is a liner that can be easily replaced in case of wear. The liner is constantly abrasion due to a continuous pressing process during tile forming, and it is required to be replaced every certain period. Even in the liner, use a wear-resistant fitting material only in areas where wear is concentrated. However, there was a risk that the fitting material was applied to large-sized tile molding due to problems such as damage to the molding machine and decrease in productivity when detached during the actual tile molding process due to weak fitting strength with the liner. Therefore, in this study, thermal-structural analysis for fitting tolerance analysis and structural analysis for fitting force analysis were performed for the shrink fit process of the fitting material.

Soft And Timely Encourgement by AI with Behavior Modification Therapy to Help Middle-Aged Obesity (중년비만 관리를 위한 행동수정요법과 인공지능 기법을 활용한 유연하고 상황에 맞는 격려 방법에 대한 연구)

  • Jung, Hee Young;Choi, Ki-Won;Hong, Soo-Young;Kim, Hee-Cheol;Kim, Dae-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.730-732
    • /
    • 2017
  • While the short term effect of diet and exercise therapy has been proven, there has still been a problem of its long term effect. So, researchers has utilized behaviour modification therapy. It is expected to lead to natural weight loss by modifying wrong dietary life patterns and practices. However, this approach has turned out to be a more effective method for weight maintenance than loss of weight. In spite of its strength, as a matter of fact, persistent and continuous effort for weight management has not worked properly. This study proposes an artificial intelligence approach with the advantages of behaviour modification therapy, overcoming current approaches which is goal-driven and too uniform. For this, we plan to develop a health management program in which users get the messages that are customized for themselves according to different situations so that it can promotes persistent effort for exercise. Here, customized messages are handled by AI techniques, which eventually promotes soft persuasion, encouragement, and motivation.

  • PDF

Characteristics of Capacitive Deionization Process using Carbon Aerogel Composite Electrodes (탄소에어로젤 복합전극의 전기용량적 탈이온 공정 특성)

  • Lee, Gi-Taek;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.77-81
    • /
    • 2005
  • Porous-composite electrodes have been developed using silica gel, which reduce carbon aerogel usage with high cost. Silica gel powder was added to the carbon aerogel to simplify the manufacturing procedure and to increase the wet-ability, the mechanical strength and the CDI efficiency. Porous composite electrodes composed of carbon aerogel and silica gel powder were prepared by paste rolling method. Carbon aerosol composite electrodes with $10\times10cm^2$ are placed face to face between spacers, and assembled the four-stage series cells for CDI process. Each stage is composed of 45 cells. Four-stage series cells (flow through cells) for CDI process are put in continuous-system reactor containing 1,000ml-NaCl solution bath of 1,000 ppm. The four-stage series cells with carbon aerogel electrodes are charged at 1.2V and are discharged at 0.001V, and then read the current. Conclusively, removal efficiencies of ions using the four-stage series cells composed of carbon aerogel composite electrodes show good removal efficiency of $99\%$ respectively.

An Experimental Study on the Mechanical and Fire Resistance Properties of ECC Fire Resistance Panel (ECC내화패널의 역학 및 내화특성에 관한 실험적 연구)

  • Lee, Sang-Soo;Kang, Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • This study was based on an experiment that examines the manufacture and performance of fiber-reinforced cement composite panels. The conclusions were drawn after testing the mechanical properties and durability characteristics of fiber-reinforced mortar, and the mechanical properties and fire resistance of ECC fire resistant column panels. It was found that the fluidity of CEL fiber was lower than that of PVA and NY fiber. The amount of air increased slightly as the combination of fibers caused the number of fine pores to increase. It was found that the mechanical performance and deformability of high strength concrete could be improved through the confinement effect of ECC fire resistant column panels. Through continuous studies on the manufacturing and field construction methods of fire resistant column panels, a new PC method that eliminates weakness in the existing processes may be developed for skyscrapers.

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu;Shao, Congying;Wu, Qian;Wang, Yunjian;Liu, Mingzhu
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850147.1-1850147.14
    • /
    • 2018
  • In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.

Fabrication and resistance heating properties of flexible SiC fiber rope as heating elements (유연한 탄화규소 섬유 로프 발열체의 제조와 저항 발열 특성)

  • Joo, Young Jun;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.258-263
    • /
    • 2020
  • Silicon carbide (SiC) fibers mainly fabricated from polycarbosilane, a ceramic precursor, are applied as reinforcing materials for ceramic matrix composites (CMCs) because of their high temperature oxidation resistance, tensile strength, and light weight. In this study, continuous SiC fibers used to fabricate rope-type flexible heating elements capable of generating high-temperature heat (> 650℃). For high-efficiency heating elements, the resistance of SiC fiber rope was measured by 2-point probe method according to the cross-sectional area and length. In addition, the fabrication conditions of rope-type SiC fiber heating elements were optimized by controlling the oxygen impurities and the size of crystal grains present in the amorphous SiC fiber. As a result, the SiC fiber heating element having a resistance range of about 100~200 Ω exhibited an excellent power consumption efficiency of 1.5 times compared to that of the carbon fiber heating element.

Microstructural Analysis of STS316L Samples Manufactured by Powder Bed Fusion and Post-heat Treatments (Powder Bed Fusion 공정으로 제조한 STS 316L의 미세조직과 후속 열처리 특성)

  • Song, S.Y.;Lee, D.W.;Cong, D.V.;Kim, J.W.;Lee, S.M.;Joo, S.H.;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.14-21
    • /
    • 2022
  • In the powder bed fusion (PBF) process, a 3D shape is formed by the continuous stacking of very fine powder layers using computer-aided design (CAD) modeling data, following which laser irradiation can be used to fuse the layers forming the desired product. In this method, the main process parameters for manufacturing the desired 3D products are laser power, laser speed, powder form, powder size, laminated thickness, and laser diameter. Stainless steel (STS) 316L exhibits excellent strength at high temperatures, and is also corrosion resistant. Due to this, it is widely used in various additive manufacturing processes, and in the production of corrosion-resistant components with complicated shapes. In this study, rectangular specimens have been manufactured using STS 316L powder via the PBF process. Further, the effect of heat treatment at 800 ℃ on the microstructure and hardness has been investigated.

Properties of Non-Sintered Cement Mortar using Alkali and Sulfate Mixed Stimulants Accroding to Curing Method (양생방법에 따른 알칼리 및 황산염 복합자극제를 사용한 비소성 시멘트 모르타르의 특성)

  • Park, Sung-Joon;Kim, Ji-Hoon;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Entering the 20th century since the industrial revolution, the cement has been widely used in the field of construction and civil engineering due to the remarkable development of construction industry. However, result from that development, each kind of industrial by-products and waste and the carbon dioxide generated in the process of cement production cause air pollution and environmental damage so earth is getting sick now slowly. Therefore, we have to recognize importance about this. It means that the time taking specific and long-term measures have come. In this research paper, as substitution of the cement generating environmental pollution, we investigate the hydration reaction of non-Sintered Cement mortar mixed with GBFS, active stimulant of alkaline and sulphate series by using SEM and XRD, mechanical and chemical properties according to the curing method. As a result of this experiment, NSC realized outstanding strength for water curing and steam curing. It means that it has a good possibility as substitution of cement. From now on, it can be used for structure satisfying specific standard. We expect to find a substitution of outstanding cement by progressing continuous research making the best use of pros and cons according to the curing method.

A Strategic Development of Incheon Port Authority Using SWOT/AHP Method (SWOT/AHP 방법을 이용한 인천항만공사의 발전 방안에 관한 연구)

  • Kim, Seong-Cheol;Ryoo, Dong-Keun;Lee, Dong-Hee
    • Journal of Navigation and Port Research
    • /
    • v.32 no.3
    • /
    • pp.193-198
    • /
    • 2008
  • To increase port productivity and efficiency and also to avoid disadvantages of public port management, a port authority system h1s been introduced worldwide. The Korea Port Authority Act was enacted in 2003 and Incheon Port Authority was established in July 2005. The objective of this paper is to develop a strategy of Incheon Port Authority using SWOT/AHP method Research findings show that possibilities of business expansion and growth as well as geographical advantages of Incheon Port are identified as its strength The opportunities of Incheon Port Authority are continuous increase of cargo handling volumes in the Yellow sea rim and expansion of Free Trade Zone. A government two-port policy and growing its dependence on China and rapid growth of more competitors in domestic and overseas are considered to be threat. Its weaknesses include superannuated Incheon port facilities and port hinterland shortages. Based on SWOT analysis combined with AHP method this paper suggests S/O strategy, W/O strategy, S/T strategy, and W/T strategy as a strategic development plan of Incheon Port Authority.

Separation of Fission Products by Ion Exchange Method (이온 교환법(交換法)에 의한 핵분열생성물(核分裂生成物)의 분리(分離))

  • Lee, Byung-Hun;Bang, Je-Geon
    • Journal of Radiation Protection and Research
    • /
    • v.8 no.1
    • /
    • pp.15-25
    • /
    • 1983
  • The sequential separation of Ru-103, Cs-137 and Ce-144 was carried out by organic cation exchanger, Amberite CG-120, and inorganic ion exchangers, silica gel and montmorillonite. The optimum conditions of Ru-103, Cs-137 and Ce-144 on Amberite CG-120 are 0.01M-, 0.01M- and 0.1IM- hydrochloric acid for the adsorption, and 3M-, 3M- and 5M-hydrochloric acid for the desorption, respectively. The optimum conditions of Ru-103, Cs-137 and Ce-144 on silica gel are pH 8, pH 8 and pH 8 for the adsorption. and 3M-, 1M- and 1M-hydrochloric acid for the desorption. respectively. The optimum conditions of Ru-103, Cs-137 and Ce-144 on montmorillonite are pH 8, 0.01M-hydrochloric acid and pH 4 for the adsorption, and 1M-, 5M- and 3M-hydrochloric acid for the desorption. respectively. The adsorption which occurs at lower ionic strength and the differences in desorption ionic strength are utilized for the separation of tracer mixture in continuous experiments. The individual separation of Ru-103, Cs-137 and Ce-144 can be carried out more efficiently with montmorillonite than with silica gel and Amberite CG-120.

  • PDF