• Title/Summary/Keyword: Continuous Strength Method

Search Result 249, Processing Time 0.023 seconds

A study on the slip-up speed of a shaft using heating slip form (히팅슬립폼을 적용한 수직구 구조물의 상승속도에 관한 연구)

  • Ko, Eomsik;Lee, Sanghun;Park, Jongpil;Zi, Goangseup;Kim, Changyong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.811-823
    • /
    • 2019
  • Slip form method is applied to many cases of a shaft these days because it is safer, more economical and faster than cast-in-place method. Slip-up height of the method is approximately 2.5 to 4.0 m/day. If the temperature of concrete is outside the range of 10 to 30℃, the effects of changes in strength or elastic characteristics are significant. Therefore, it is difficult for slip-up speed to be higher than 3 m/day during winter construction. In addition, concrete has heat caused by hydration, which causes temperature cracking of hardened concrete. Therefore, temperature control of concrete curing is necessary for the continuous slip-up of slip form. In this study, the rebound hardness, time of ultrasonic waves propagation, heat of hydration, and external temperature are measured by developing heating panels and test devices for the continuous slip-up. Based on this, heating slip form is manufactured; this was applied to "Kimpo sites" and "Sinwol sites". The compared slip-up speed samples were 1.9 m/day or 0.200 m/hr on average at Gimpo sites (08:00~17:30) and 2.0 m/day or 0.210 m/hr at Sinwol sites.

Fixed-bed Adsorption of Phenolic Acids on Charcoal in Multi Solutes System (활성탄을 이용한 다성분계 페놀산 용액의 고정층 흡착)

  • Lee, Won-Young;Choi, Yong-Hee
    • Current Research on Agriculture and Life Sciences
    • /
    • v.15
    • /
    • pp.83-91
    • /
    • 1997
  • Phenolic acids are regarded as harmful materials in food and environment science. But recently, regarded as useful materials by their characteristics which bind metal ions and have pharmaceutical effect. It was necessary to remove or recover phenolic acids from solutIon containing phenolic acids. Continuous fixed-bed adsorption was adapted in order to separate phenolic acids from diluted solution and the breakthrough curve was predicted by nonlinear curve fitting method. The larger bed length showed the longer breakpoint time and the slow mass transfer coefficient. Ferulic acid among the phenolic acids was passed through the breakpoint first and the second and. third were p-coumaric acid and gallic acid. These orders were caused by not only ionic strength between adsrobent and adsorbate but also molecular weights.

  • PDF

Inverse Emulsion Polymerization of Water Absorbent Polymer for Strength Enhancement of Mortars (모르타르 강도 증진을 위한 고분자 흡수제의 역유화 중합)

  • Hwang, Ki-Seob;Jung, Myoung-Geun;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.434-441
    • /
    • 2010
  • Sodium polyacrylate (PAANa) was synthesized by inverse emulsion polymerization method to absorb excess water in concrete. Liquid paraffin was used as a continuous phase. Acrylic acid (AA) was neutralized by aqueous sodium hydroxide solution (8 M). Different amount of N,N'-methylene bisacrylamide (MBA) was used as a crosslinking agent to change crosslinking density of the synthesized PAANa. The size distribution of synthesized particles was measured by particle size analyzer. Swelling ratio of crosslinked PAANa was evaluated from the equation in D. I. water, cement aqueous solution, and $Ca(OH)_2$ aqueous solution. The FTIR spectroscopy was used to characterize $Ca^{2+}$ ion interaction with PAANa. Incorporation of 1.0 wt% PAANa into cement increased compressive and flexural strength approximately 30% and 10%, respectively, compared with those of ordinary portland cement.

Numerical Study on Interior Flat Plate-Column Connections Subjected to Unbalanced Moment (불균등 휨모멘트를 받는 플랫 플레이트-기둥 접합부에 대한 해석연구)

  • 최경규;황영현;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.949-960
    • /
    • 2002
  • Flat plate structures under lateral load are susceptible to punching shear failure of the slab-column connection. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, due to complexity in the behavior and difficulty in simulating the actual load and boundary conditions of the flat plate system, it is not easy to obtain reliable data regarding to the strength and ductility from the previous experimental studies. In the present study, a numerical study was performed for interior connections of continuous flat plate. For the purpose, a computer program for nonlinear FE analyses was developed, and the validity was verified by comparisons with the existing experimental results. Through the parametric studies, the variations of bending moment, shear, and torsional moment around the connection were investigated. Based on the findings of the numerical studies, the aspects which need to be improved in current design methods were discussed. The results of the present study will be used for developing a design method for the flat plate-column connection in the companion paper.

Studies of Valve Lifter for Automotive Heavy Duty Diesel Engine by Ceramic Materials I. Developmet of Ceramic-Metal Joint by Brazing Method (Ceramic 재질을 이용한 자동차용 대형 디젤 엔진 Valve Lifter 연구 I. Brazing Process에 의한 Ceramic-Metal 접합체 개발)

  • 윤호욱;한인섭;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.163-171
    • /
    • 1998
  • Continuously contacting with camshaft the face of Valve Lifter made of cast iron brings about abnormal wear such as unfairwear or earlywear because it is heavily loaded in the valve train systems as the engine gets more powered. This abnormal wear becomes a defet namely over-clearance when the valve is lifting so that the fuel gas imperfectly combusted by unsuitable open or close aaction of the engine valve in the combustion chamber. The imperfect combustion in the end results in the major cause of air pollution and combustion chamber. The imperfectly combusted by unsuitable open or close action of the engine valve in the combustion chamber. The imperfect combustion in the end results in the major causes of air pollution and decrease of the engine output. Consequently to prevent this wear this study was to develop the valve lifter which is joined by brazing process with SCM435H and a tip by manufacturing the face as a superhardened which is joined by brazing process with SCM435H and a tip by manufacturing the face as a superhardened ceramics alloy which has high wear resistance. Having the excellent surface hardness with Hv1100-1200 the sintered body developed with superhardened alloy(WC) can endure the severe face loading in the valve train system. We experienced with various brazing alloys and obtained the excellent joining strength to the joint had 150MPa shear strength. Interface analysis and microstructure in a joint were examined through SEM & EDS Optical microscope. Also 2,500 hours high speed(3,000-4,000 rpm) and continuous (1step 12hr) engine dynamo testing was carried out to casting valve liter and ceramics-metal joint valve lifter so that the abnormal wears were compared and evaluated.

  • PDF

A Study on Adhesion Characteristics of Co-cured Long Fiber Prepreg Sheet-Aluminum Hybrid Structures (동시 경화 장섬유 복합재료-알루미늄 혼성 구조물의 접착 특성 연구)

  • Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.17-22
    • /
    • 2018
  • Long Fiber Prepreg Sheet (LFPS) has the advantages of excellent production efficiency and formability for complex shapes compared to conventional continuous fiber reinforced composites. When fibrous composites are used with different materials, joining method is important because strength of the joining part determines the strength of the hybrid structure. In this study, the adhesive joint strengths of co-cured LFPS and aluminum were evaluated under various surface treatment conditions and environmental conditions (temperature and moisture conditions). Mechanical abrasion and plasma exposure were used for the surface treatment. The adhesive joints experienced various surface treatments were tested by using single lap joint specimens. Adhesive strengths under various conditions were compared and the most appropriate condition was determined.

Evaluation of the Protection Performance of SB4 Class Concrete Barrier with Anti-Glare Function (SB4 등급 방현기능 콘크리트 방호울타리의 방호성능 평가)

  • Joo, Bongchul;Hong, Kinam;Yun, Junghyun;Lee, Jaeha;Kim, Jungho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • This paper describes the process of developing a concrete median barrier of SB4 grade with anti-glare function. The development section has a height and width of 1,270mm and 560mm, respectively. A wire mesh is placed in the center of the cross section to improve the protection performance. Collision analysis predicted that this section satisfies the strength and occupant protection performance, and that no damage to the barrier occurs. In the actual collision test, it was confirmed that this section satisfies the strength and occupant protection performance. However, damage was observed on two concrete barrier when the truck crashed. In order to improve the accuracy of the collision analysis of the concrete barrier in the future, it is considered that a study on the model development and continuous collision analysis method for domestic commercial vehicles should be carried out.

Enhanced nitrogen removal from high-strength ammonia containing wastewater using a membrane aerated bioreactor (MABR)

  • Arindam Sinharoy;Ji-Hong Min;Chong-Min Chung
    • Membrane and Water Treatment
    • /
    • v.15 no.2
    • /
    • pp.59-66
    • /
    • 2024
  • This study evaluated the performance of a membrane aerated biofilm reactor (MABR) for nitrogen removal from a high-strength ammonia nitrogen-containing wastewater. The experimental setup consisted of four compartments that are sequentially anaerobic and aerobic to achieve complete nitrogen removal. The last compartment of the reactor setup contained a membrane bioreactor (MBR) to reduce sludge production in the system and to obtain a better-quality effluent. Continuous experiment over a period of 47 days showed that MABR exhibited excellent NH4+-N removal efficiency (99.5%) compared to the control setup without MABR (56.5%). The final effluent NH4+-N concentration obtained in the MABR was 2.99±1.56 mg/L. In contrast to NH4+-N removal, comparable TOC removal values in the MABR and the control reactor (99.2% and 99.3%, respectively) showed that air supply through MABR is much more critical for denitrification than for organic removal. Further study to understand the effect of air supply rate and holding pressure on NH4+-N removal in MABR revealed that an increase in both these parameters positively impacted reactor performance. These parameters are related to oxygen supply to the biofilm formed over the membrane surface, which in turn influenced NH4+-N removal in MABR. Among the two different strategies to control biofilm over the membrane surface, results showed that scouring for a duration of 10 min on a weekly basis, along with mixing air supply, could be an effective method.

Preparation of a Porous Chitosan/Fibroin-Hydroxyapatite Composite Matrix for Tissue Engineering

  • Kim, Hong-Sung;Kim, Jong-Tae;Jung, Young-Jin;Ryu, Su-Chak;Son, Hong-Joo;Kim, Yong-Gyun
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • Chitosan, fibroin, and hydroxyapatite are natural biopolymers and bioceramics that are biocompatible, biodegradable, and resorb able for biomedical applications. The highly porous, chitosan-based, bioceramic hybrid composite, chitosanlfibroin-hydroxyapatite composite, was prepared by a novel method using thermally induced phase separation. The composite had a porosity of more than 94% and exhibited two continuous and different morphologies: an irregularly isotropic pore structure on the surface and a regularly anisotropic multilayered structure in the interior. In addition, the composite was composed of an interconnected open pore structure with a pore size below a few hundred microns. The chemical composition, pore morphology, microstructure, fluid absorptivity, protein permeability, and mechanical strength were investigated according to the composition rate of bioceramics to biopolymers for use in tissue engineering. The incorporation of hydroxyapatite improved the fluid absorptivity, protein permeability, and tenacity of the composite while maintaining high porosity and a suitable microstructure.

Geometric Detail Suppression for the Generation of Efficient Finite Elements (효율적 유한요소 생성을 위한 미소 기하 특징 소거)

  • 이용구;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.175-185
    • /
    • 1997
  • Given the widespread use of the Finite Element Method in strength analysis, automatic mesh generation is an important component in the computer-aided design of parts and assemblies. For a given resolution of geometric accuracy, the purpose of mesh generators is to discretize the continuous model of a part within this error limit. Sticking to this condition often produces many small elements around small features in spite that these regions are usually of little interest and computer resources are thus wasted. Therefore, it is desirable to selectively suppress small features from the model before discretization. This can be achieved by low-pass filtering a CAD model. A spatial function of one dimension higher than the model of interest is represented using the Fourier basis functions and the region where the function yields a value greater than a prescribed value is considered as the extent of a shape. Subsequently, the spatial function is low-pass filtered, yielding a shape without the small features. As an undesirable effect to this operation, all sharp corners are rounded. Preservation of sharp corners is important since stress concentrations might occur there. This is why the LPF (low-pass filtered) model can not be directly used. Instead, the distances of the boundary elements of the original shape from the LPF model are calculated and those that are far from the LPF model are identified and removed. It is shown that the number of mesh elements generated on the simplified model is much less than that of the original model.

  • PDF