• Title/Summary/Keyword: Continuous Sensor

Search Result 586, Processing Time 0.027 seconds

An Efficient Filtering Method for Processing Continuous Skyline Queries on Sensor Data (센서데이터의 연속적인 스카이라인 질의 처리를 위한 효율적인 필터링기법)

  • Jang, Su-Min;Kang, Gwang-Goo;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.938-942
    • /
    • 2009
  • In this paper, we propose a novel filtering method for processing continuous skyline queries on wireless sensor network environments. The existing filtering methods use the filter based on router paths. However, because these filters are applied not to a whole area but to a partial area, these methods send almost data of sensor nodes to transmit to the base station and have no sufficient effect in terms of energy efficiency. Therefore, we propose an efficient method to dramatically reduce the transmission data of sensors through applying a low-cost and effective filter to all sensor nodes. The proposed effective filter is generated by using characteristics such as the data locality and the clustering of sensors. An extensive performance study verifies the merits of our new method.

Characteristics of Indium-Tin-Oxide Electrode for Continuous-flow PCR Chip (연속흐름 중합효소연쇄반응칩 제작을 위한 인듐 산화막 전극의 특성분석)

  • Joung, Seung-Ryong;Kim, Jun-Hyeok;Yi, In-Je;Kang, C.J.;Kim, Yong-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.561-565
    • /
    • 2007
  • We propose glass and PDMS (polydimethylsiloxane) chips for DNA amplification with continuous-flow PCR (polymerase chain reaction). The PDMS microchannel was fabricated using a negative molding method for sample injection. Three heaters and sensors of ITO (indium-tin-oxide) thin films were fabricated on glass chip. ITO heaters and sensors were calibrated accurately for the temperature control of the liquid flow. ITO heater generated stable heat versus applied power. ITO sensor resistance was changed linearly versus temperature increase as a RTD (resistance temperature detector) sensor. As a result, we enable precision temperature control of continuous-flow PCR chip. Using the continuous-flow PCR chip DNA plasmid pKS-GFP 720 bp was successfully amplified.

Developing Artificial Neurons Using Carbon Nanotubes Smart Composites (탄소나노튜브 스마트 복합소재를 이용한 인공뉴런 개발 연구)

  • Kang, In-Pil;Baek, Woon-Kyung;Choi, Gyeong-Rak;Jung, Joo-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.136-141
    • /
    • 2007
  • This paper introduces an artificial neuron which is a nano composite continuous sensor. The continuous nano sensor is fabricated as a thin and narrow polymer film sensor that is made of carbon nanotubes composites with a PMMA or a silicone matrix. The sensor can be embedded onto a structure like a neuron in a human body and it can detect deteriorations of the structure. The electrochemical impedance and dynamic strain response of the neuron change due to deterioration of the structure where the sensor is located. A network of the long nano sensor can form a structural neural system to provide large area coverage and an assurance of the operational health of a structure without the need for actuators and complex wave propagation analyses that are used with other methods. The artificial neuron is expected to effectively detect damage in large complex structures including composite helicopter blades and composite aircraft and vehicles.

  • PDF

Experimental Study on the Performance of Finite Bearing Operating in Turbulent Regime (난류영역에서 운전되는 유한폭 저어널베어링에서의 성능특성에 관한 실험적 연구)

  • 이득우;김경웅
    • Tribology and Lubricants
    • /
    • v.8 no.1
    • /
    • pp.44-47
    • /
    • 1992
  • The performance of finite journal bearing operating in turbulent regime was investigated experimentally. In order to obtain experimental data containing surrounding conditions (thermal deformation, machining error etc.) of journal bearing, this study mounted a pressure sensor and a gap sensor on the journal. The data for continuous pressure profile and continuous film thickness profile were presented in this paper.

Enhancement of Electrocatalytic Activity upon the Addition of Single Wall Carbon Nanotube to the Redox-hydrogel-based Glucose Sensor

  • Kim, Suk-Joon;Quan, Yuzhong;Ha, Eunhyeon;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.33-37
    • /
    • 2021
  • In electrochemical glucose sensing, the enhancement of the sensitivity and the response time is essential in developing stable and reliable sensors, especially for continuous glucose monitoring. We developed a method to increase the sensitivity and to shorten the response time for the sensing upon the appropriate addition of single wall carbon nanotube onto the osmium polymer-based hydrogel electrode. Also, the background stabilization is dramatically enhanced.

Reliable Continuous Object Detection Scheme in Wireless Sensor Networks (무선 센서 네트워크에서 신뢰성 있는 연속 개체 탐지 방안)

  • Nam, Ki-Dong;Park, Ho-Sung;Yim, Young-Bin;Oh, Seung-Min;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1171-1180
    • /
    • 2010
  • In wireless sensor networks, reliable event detection is one of the most important research issues. For the reliable event detection, previous works usually assume the events are only individual objects such as tanks and soldiers. Recently, many researches focus on detection of continuous objects such as wild fire and bio-chemical material, but they merely aim at methods to reduce communication costs. Hence, we propose a reliable continuous object detection scheme. However, it might not be trivial. Unlike individual objects that could be referred as a point, a continuous object is shown in a dynamic two-dimensional diagram since it may cover a wide area and it could dynamically alter its own shape according to physical environments, e.g. geographical conditions, wind, and so on. Hence, the continuous object detection reliability can not be estimated by the indicator for individual objects. This paper newly defines the reliability indicator for continuous object detection and proposes an error recovery mechanism relying on the estimation result from the new indicator.

Damage Analysis of CCD Image Sensor Irradiated by Continuous Wave Laser (연속발진 레이저에 의한 CCD 영상센서의 손상 분석)

  • Yoon, Sunghee;Jhang, Kyung-Young;Shin, Wan-Soon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.690-697
    • /
    • 2016
  • EOIS(electro-optical imaging system) is the main target of the laser weapon. Specially, the image sensor will be vulnerable because EOIS focuses the incident laser beam onto the image sensor. Accordingly, the laser-induced damage of the image sensor needs to be identified for the counter-measure against the laser attack. In this study, the laser-induced damage of the CCD image sensor irradiated by the CW(continuous wave) NIR(near infrared) laser was experimentally investigated and mechanisms of those damage occurrences were analyzed. In the experiment, the near infrared CW fiber laser was used as a laser source. As the fluence, which is the product of the irradiance and the irradiation time, increased, the permanent damages such as discoloration and breakdown appeared sequentially. The discoloration occurred when the color filter was damaged and then the breakdown occurred when the photodiode and substrate were damaged. From the experimental results, LIDTs(laser-induced damage thresholds) of damages were roughly determined.

Case Study on Integrated In-line Oil Monitoring Sensor for Machine Condition Monitoring of Steel Making Industry (통합형 인-라인 오일 모니터링 센서의 제철설비 현장 적용사례)

  • Kong, H.;Han, H.G.;Kwak, J.S.;Chang, W.S.;Im, G.G.
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.73-77
    • /
    • 2010
  • One of the important trends for condition monitoring in the 21st century is the development of smart sensors that will permit the cost-effective continuous monitoring of key machine equipments. In this study, an integrated in-line oil monitoring sensor assigned for continuous in situ monitoring multiple parameters of oil performance is presented. The sensor estimates oil deterioration based on the information about chemical degradation, total contamination, water content of oil and oil temperature. The oil oxidation is estimated by "chromatic ratio", total contamination is measured by the changes in optical density of oil in three optical wave-bands ('Red', 'Green' and 'Blue') and water content is evaluated as relative saturation of oil by water. In order to evaluate the sensor's effectiveness, the sensor was applied to several used oil samples in steel making industry and the results were compared with those measured by standard test methods.

Development of MEMS Accelerometer-based Smart Sensor for Machine Condition Monitoring (MEMS 가속도계 기반 기계 상태감시용 스마트센서 개발)

  • Son, Jong-Duk;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.448-452
    • /
    • 2007
  • Many industrial operations require continuous or nearly-continuous operation of machines, which if interrupted can result in significant financial loss. The condition monitoring of these machines has received considerable attention recent years. Rapid developments in semiconductor, computing, and communication with a remote site have led to a new generation of sensor called "smart" sensors which are capable of wireless communication with a remote site. The purpose of this research is the development of smart sensor using which can on-line perform condition monitoring. This system is addressed to detect conditions that may lead to equipment failure when it is running. Moreover it will reduce condition monitoring expense using low cost MEMS accelerometer. This sensor can receive data in real-time or periodic time from MEMS accelerometer. Furthermore, this system is capable for signal preprocessing task (High Pass Filter, Low Pass Filter and Gain Amplifier) and analog to digital converter (A/D) which is controlled by CPU. A/D converter that converts 10bit digital data is used. This sensor communicates with a remote site PC using TCP/IP protocols. Wireless LAN contain IEEE 802.11i-PSK or WPA (PSK, TKIP) encryption. Developed sensor executes performance tests for data acquisition accuracy estimations.

  • PDF

Development of MEMS Accelerometer-based Smart Sensor for Machine Condition Monitoring (MEMS 가속도계 기반의 기계 상태감시용 스마트센서 개발)

  • Son, Jong-Duk;Shim, Min-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.872-878
    • /
    • 2008
  • Many industrial operations require continuous or nearly-continuous operation of machines, interruption of which can result in significant cost loss. The condition monitoring of these machines has received considerable attentions in recent years. Rapid developments in semiconductor, computing, and communication with a remote site have led to a new generation of sensor called "smart" sensors which are capable of wireless communication with a remote site. The purpose of this research is to develop a new type of smart sensor for on-line condition monitoring. This system is addressed to detect conditions that may lead to equipment failure when it is running. Moreover it will reduce condition monitoring expense using low cost MEMS accelerometer. This system is capable for signal preprocessing task and analog to digital converter which is controlled by CPU. This sensor communicates with a remote site PC using TCP/IP protocols. The developed sensor executes performance tests for data acquisition accuracy estimations.