• Title/Summary/Keyword: Continuous Monitoring System

Search Result 628, Processing Time 0.031 seconds

On-line Monitoring and Diagnostics for Distribution Panel System (배전반 시스템의 온라인 감시 및 진단)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.106-110
    • /
    • 2008
  • Continuous on-line temperature monitoring allows corrective measures to be taken to prevent upcoming failure. Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system.

  • PDF

A Continuous Monitoring System for the Determination of Cyanide Ions Using Nickel Complexation Reaction (흡수분광법을 적용한 시안화이온의 연속 모니터링 장치 구성 및 적용)

  • Kim, Kyung Min;Lee, Sang Hak;Kim, Young Ho;Kim, Gyu Man;Oh, Sang-Hyub
    • Applied Chemistry
    • /
    • v.16 no.1
    • /
    • pp.25-28
    • /
    • 2012
  • A determination method of cyanide ion (CN-) using nickel complexation reaction by continuous monitoring system. The mechanical parameters and chemical conditions of the complexation reaction were investigated prior to application of continuous monitoring system for determination of cyanide. On the optimized conditions, the calibration curve was linear over the range from 5.0×10-6 to 1.0×10-4 M. In this range, 2.40% of the reproducibility (RSD, n=3) was obtained. The limit of detection (3σ/s) was calculated to be 1.8×10-6 M.

An integrated monitoring system for life-cycle management of wind turbines

  • Smarsly, Kay;Hartmann, Dietrich;Law, Kincho H.
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.209-233
    • /
    • 2013
  • With an annual growth rate of about 30%, wind energy systems, such as wind turbines, represent one of the fastest growing renewable energy technologies. Continuous structural health monitoring of wind turbines can help improving structural reliability and facilitating optimal decisions with respect to maintenance and operation at minimum associated life-cycle costs. This paper presents an integrated monitoring system that is designed to support structural assessment and life-cycle management of wind turbines. The monitoring system systematically integrates a wide variety of hardware and software modules, including sensors and computer systems for automated data acquisition, data analysis and data archival, a multiagent-based system for self-diagnosis of sensor malfunctions, a model updating and damage detection framework for structural assessment, and a management module for monitoring the structural condition and the operational efficiency of the wind turbine. The monitoring system has been installed on a 500 kW wind turbine located in Germany. Since its initial deployment in 2009, the system automatically collects and processes structural, environmental, and operational wind turbine data. The results demonstrate the potential of the proposed approach not only to ensure continuous safety of the structures, but also to enable cost-efficient maintenance and operation of wind turbines.

On-Line Diagnostics and Monitoring of Distribution Panel Using IR-Sensor (광온도센서를 이용한 분전반의 온라인 진단 및 감시)

  • Yun, Ju-Ho;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2110-2111
    • /
    • 2008
  • Continuous on-line temperature monitoring allows corrective measures to be taken to prevent upcoming failure. Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system.

  • PDF

A Continuous Evaluation Processes for Information Security Management

  • Choi, Myeonggil
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.3
    • /
    • pp.61-69
    • /
    • 2016
  • Growing information threats have threatened organization to lose information security controls in these days. Many organizations have accepted the various information security management systems does mention necessity of a continuous evaluation process for the executions of information security management in a theoretical aspect. This study suggests a continuous evaluation process for information security management reflecting the real execution of managers and employees in organizations.

Design and Implementation of Advanced Traffic Monitoring System based on Integration of Data Stream Management System and Spatial DBMS

  • Xia, Ying;Gan, Hongmei;Kim, Gyoung-Bae
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.162-169
    • /
    • 2009
  • The real-time traffic data is generated continuous and unbounded stream data type while intelligent transport system (ITS) needs to provide various and high quality services by combining with spatial information. Traditional database techniques in ITS has shortage for processing dynamic real-time stream data and static spatial data simultaneously. In this paper, we design and implement an advanced traffic monitoring system (ATMS) with the integration of existed data stream management system (DSMS) and spatial DBMS using IntraMap. Besides, the developed ATMS can deal with the stream data of DSMS, the trajectory data of relational DBMS, and the spatial data of SDBMS concurrently. The implemented ATMS supports historical and one time query, continuous query and combined query. Application programmer can develop various intelligent services such as moving trajectory tracking, k-nearest neighbor (KNN) query and dynamic intelligent navigation by using components of the ATMS.

  • PDF

Evaluation of Glucose Concentration by Wireless Continuous Glucose Monitoring System in Healthy Dogs (무선 연속 당측정기에 의한 정상 개의 당 농도 평가)

  • Kang, Ji-Houn;Kim, Sung-Soo;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.27 no.4
    • /
    • pp.392-396
    • /
    • 2010
  • Blood glucose curves in the management for diabetic patients have several limitations including intermittent assessment of blood glucose concentration, hospitalization, patient restraint, and repeated phlebotomy. The aim of this study was to apply and evaluate a wireless continuous glucose monitoring system (CGMS) in healthy dogs. Subcutaneous interstitial glucose concentrations in 7 dogs were continuously monitored and recorded by wireless CGMS. During induced hyperglycemia, the interstitial glucose concentrations were compared with whole blood glucose concentrations measured by glucometer and serum glucose concentrations measured by automated chemistry analyzer, respectively. There were no significant differences among interstitial, whole blood and serum glucose concentrations. The interstitial glucose concentrations had a good correlation to serum glucose concentrations. The real-time wireless CGMS is a valuable tool for monitoring system of glucose concentrations in dogs. Use of the CGMS for diabetic patients will provide accurate information over traditional blood glucose curves.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

An Intelligent bridge with an advanced monitoring system and smart control techniques

  • Miyamoto, Ayaho;Motoshita, Minoru
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.587-599
    • /
    • 2017
  • This paper introduces an approach to the realization of an ICT-based bridge remote monitoring system that enables real-time monitoring and controlled adjustments for unexpected heavy loads and also for damaging earthquakes or typhoons. In this paper, an integrated bridge remote monitoring system called the "Intelligent Bridge", which consists of a stand-alone monitoring system (SMS) and a web-based Internet monitoring system(IMS), was developed for not only bridge maintenance but also as an application for a para-stressing bridge system. To verify the possibility of controlling the actual structural performance of an "Intelligent Bridge", a model 2-span continuous cable-stayed bridge with adjustable cables was constructed. The experimental results demonstrate that the implemented monitoring system supplies detailed and accurate information about bridge behaviour for further evaluation and diagnosis, and it also opens up prospects for future application of a web-based remote system to actually adjust in-service bridges under field conditions.