• 제목/요약/키워드: Continuous Heating Control

검색결과 59건 처리시간 0.023초

다중 증발기를 갖는 에어컨시스템에 대한 최적화된 Multi-Fuzzy 제어기 설계 (Design of Optimized Multi-Fuzzy Controllers for Air-Conditioning System with Multi-Evaporators)

  • 정승현;최정내;오성권
    • 한국지능시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.7-12
    • /
    • 2007
  • 본 논문은 에어컨시스템의 효율과 안정도에 영향을 주는 과열도와 저압을 제어하기 위한 다중 퍼지제어기 설계를 소개한다. 시스템 에어컨은 압축기 응축기 및 여러 대의 증발기와 확장 밸브로 구성되며, 냉매의 상태가 달라지면 시스템 전반적으로 그 영향이 파급되어 제어가 쉽지 않다. 이에 3대의 확장밸브와 1대의 압축기에서 동시에 과열도와 저압을 효과적으로 제어하는 다중 퍼지제어기를 설계한다. 제안된 퍼지 제어기는 연속형 간략추론 방식과 이산형 lookup_table 방식을 사용하고, 실수코딩 유전자 알고리즘(GAs)을 이용하여 최적의 퍼지제어기의 환산계수를 구한다. 그리고 기존 방식의 결과와 연속형 간략추론 방식 및 이산형 lookup_table 방식의 시뮬레이션 결과를 성능관점에서 상호 비교한다.

스위칭 속도 및 온도 제어를 사용한 고압용 정지형 무효전력 보상장치의 안정화 (Stabilization of High-Voltage Static Var Compensator Using Switching Velocity and Temperature Control)

  • 김용태;이창석
    • 한국지능시스템학회논문지
    • /
    • 제23권2호
    • /
    • pp.107-112
    • /
    • 2013
  • 본 논문에서는 고압용 정지형 무효전력 보상장치의 스위칭 모듈의 속도 제어 및 온도 제어 기법을 제안한다. 지속적인 전력 수요의 증가에 따른 발전 설비 및 송 배전설비의 신규 건설이 요구되고 있으며, 전력수송설비의 신 증설로 전력수송로의 병목현상에 따른 문제점이 나타나고 있다. 따라서 기존설비의 이용률을 극대화하고, 신규건설 없이 송전용량을 증대시키는 방안이 연구 되고 있다. 기존의 정지형 무효전력 보상장치 제어 방식에서는 전원입력회로에서 전위 검출하여 SCR를 직접 스위칭 동작하게 되어 있어서 노이즈가 발생하게 된다. 제안한 방법은 SCR 양단의 전위차를 바탕으로 스위칭 제어하여 스위칭 속도가 향상되고 노이즈가 감소하게 된다. 또한 스위칭 속도 증가로 발생하는 발열을 실시간 온도 제어함으로 안정성을 향상하였다. 실제 실험 환경을 구성하여 제안한 고압용 정지형 무효전력 보상장치의 속도 및 온도 제어를 실험하고, 실제 현장에서 성능을 검증하였다. 제안한 고압용 정지형 무효전력 보상장치의 스위칭 모듈을 통한 온도 제어를 실험하고, 실제 현장에서 성능을 검증하였다.

설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제28권6호
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

생산 초기 초음속 항공기 조종석의 고품질 공기 확보를 위한 burn-in test 연구 (A study on the burn-in test to accomplish high quality cockpit air of an ultra-sonic aircraft in the early stage of production)

  • 신재혁;박성제;서동연;정수헌
    • 한국항공우주학회지
    • /
    • 제44권10호
    • /
    • pp.871-876
    • /
    • 2016
  • 생산 초기의 초음속 항공기는 블리드 에어 덕트에 존재하는 생산용 자재의 부가 물질이 가열될 경우 조종실에 타는 냄새와 유사한 비정상적인 냄새가 조종실로 유입된다. 조종사가 이와 같은 냄새를 엔진의 화재와 같은 비상 상황으로 오인하는 것을 방지하기 위해 비정상적인 냄새의 원인 물질은 시험 비행 전에 burn-in test를 통해 제거되어야 한다. 그러나, 현재의 절차의 최고 온도보다 고고도 비행의 최고 온도가 더 높기 때문에 냄새를 완벽히 제거 할 수 없다. 본 논문은 고고도 비행의 열적 상황을 분석하여 개선된 burn-in test 절차를 제시한다. 비연속적인 유량 조절, 단위 시간당 높은 온도 변화율, 응축기와 터빈의 한계 온도 차이 때문에 현재의 절차로는 고고도 조건을 모사하지 못하는 것이 확인되었다. 이러한 한계를 극복하기 위해 램에어 입구 제어를 통해 연속적 유량 조절이 가능한 burn-in test 절차를 제시하였다. 제시된 방법을 통해 블리드 에어 온도가 지상에서 고고도 비행 조건 이상임을 확인하였으며, 비행 시험을 통해 비정상적인 냄새를 제거할 수 있음을 검증했다.

Air Pollution Control In Industrialized Cities of the I.R. Iran

  • Ganjidoust, Hossein;Ayatl, Blta
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 International Symposium on Clean Environment
    • /
    • pp.15-18
    • /
    • 2003
  • Recently, some researches related to air pollution problems in large cities of the Islamic Republic of Iran have been done. Famous institutes and research centers in countries like Japan, Sweden and Germany have been in cooperation with Iranian institutes in implementing the results. Due to quick increase in the population because of peoples' migration from countryside to cities, and rate of growth in the early years after the revolution, air pollution was an important problem in I.R.Iran. Therefore, air pollution control is one of the main issues in major cities of I.R. Iran. It is the purpose of this study to investigate the control mechanisms for air pollution problems in the major industrial cities. The necessary action plans that were taken in recent years in some of the cities, which were also suggested to be taken in the other ones, are the other purpose of this study. From the results of studies it was obtained in Iran, lots of researches are important to mention. Amongst the main activities that are done in recent years are: establishing of the meteorological research centers and atmosphere sciences; three applicator meteorological research centers and more than 40 new stations in the country; installation of newest computer systems in metrological information, using of wall map and continuous radio-traffic to announce traffic news; completing of subway construction in Tehran; forbidding of industrial activities in a definite distance away from Tehran and transferring them to suitable places; building of highways and freeways; improving of public transportation and gasifying them; developing of fuels quality and removing lead from them; and gasifying of the heating systems in houses and buildings.

  • PDF

Determination of Energy and Time Requirement for Cooking Pigeon Pea (Cajanus cajan)

  • Akinoso, Rahman;Oladeji, Ojeronke Dewum
    • Journal of Biosystems Engineering
    • /
    • 제42권1호
    • /
    • pp.56-61
    • /
    • 2017
  • Purpose: High energy requirement and long cooking time are limiting consumption of pigeon pea (Cajanus cajan), a nutritious food. This study was performed to estimate energy and time demand by different methods of cooking pigeon pea. Methods: Pigeon pea (150 g) was soaked in 2.0 L of water at ambient temperature ($29{\pm} 2^{\circ}C$) to determine hydration behavior. Cooking experiments were conducted using aluminum and pressure-cooking pots. Efficiency of cooking was evaluated using four types of cooking appliances (kerosene, liquefied petroleum gas (LPG), electric, and charcoal stoves). Normal (continuous heating until the food was satisfactorily cooked) and control (controlling the energy input to closely match the actual energy required) cooking were conducted. Energy requirement and duration of cooking were determined using standard procedures. Results: Soaking increased moisture content from 11.99 to 30.01% in 90 min, while water absorption rate decreased with soaking duration. In cooking 150 g of pigeon pea using kerosene stove, presoaked normal pressure-pot cooking method consumed the least energy (10 800 kJ) and time (205 min), while unsoaked normal cooking consumed the highest energy (18 450 kJ) and time (336 min). Using LPG stove, unsoaked normal cooking method required the highest energy (52 470 kJ), while presoaked control pressure-pot required the least energy (14 405 kJ). For electric stove, the lowest energy (15 560 kJ) and shortest duration (105 min) were recorded during control cooking of presoaked sample in the pressure-pot. Conclusions: Control cooking was not practicable using charcoal stove. Generally, kerosene stove consumed the least energy, while electric stove was found to have the shortest duration of cooking.

방사선 조사식품에 대한 인식연구 (A Study on the Awareness of the Irradiated Food)

  • 정봉재;박병규;박지군;강상식;노시철
    • 한국방사선학회논문지
    • /
    • 제8권6호
    • /
    • pp.347-355
    • /
    • 2014
  • 식품의 살균법은 가열법, 저온살균법, 훈증법 그리고 방사선 조사법과 같은 다양한 방법으로 살균을 수행하고 있다. 방사선 조사식품은 다른 타 살균법에 비해 에너지 소요량이 적으면서 강력한 투과력으로 연속적인 처리 공정이 가능하다는 장점뿐만 아니라 살균에만 국한하지 않고 살충 및 발아억제 그리고 숙도를 조절함으로써 안전성에 관한 연구가 많이 이루어지고 있으나, 국내에선 연구된 보고 사례가 많지 않다. 본 연구에서는 방사선 조사식품에 대한 인식을 파악하기 위해 설문지를 통해 연구를 수행하였다. 연구대상자는 가정에서 식생활을 책임지고 있는 학부모를 대상으로 하였다. 그 결과 방사선조사식품에 대한 인식은 평균 2.73점으로 낮게 나타났으며, 인식개선을 위한 적극적인 홍보와 교육이 필요할 것으로 사료된다.

The Extraction of Co-PET from Non-Woven Fabrics of Nylon/Co-PET Sea-island Type Composite Microfiber

  • Park, Myung-Soo;Yoon, Jong-Ho;Cho, Dae-Hyun
    • 한국의류산업학회지
    • /
    • 제3권5호
    • /
    • pp.466-472
    • /
    • 2001
  • To find a suitable condition in this process examined, we investigated the main control factors, such as, the NaOH concentrations, such as, the NaOH concentrations, the heat treating times, and the heating temperatures. The resulting mechanical properties of the fabrics also studied. The samples used were Nylon/Co-PET sea-island type composite microfiber (Co-PET content: 35%) non-woven fabric. The conclusions obtained were as follows. 1. For the complete extraction of Co-PET from the sample non-woven fabric in the dry hot air process, $160^{\circ}C$ of air temperature, 15 min. of treatment time, and around 30% of NaOH concentration were required. On the other hand, in the wet hot air process, $140^{\circ}C$ of air temperature, 3.5 min. of treatment time, and around 30% of NaOH concentration were required. 2. The mechanical properties of the continuous processed samples showed that the WT, B, and WC increased with increasing the weight reduction ratio. However, the G, decreased with increasing the weight loss ratio. Note that, particularly in B, it increased drastically when the weight deduction ratios exceeded 30%. 3. As increasing the wet hot air temperature from 130 to $140^{\circ}C$, B appeared to increase, however, WT, G, and WC appeared to decrease. 4. The best condition found in this continuous process to extract Co-PET is the wet hot air temperature of 140, NaOH concentration of 28% or above, and the treatment time 2-4 min.

  • PDF

MTV를 적용한 아스팔트 포설에서 열분리 저감 효과 (Effect of Thermal Segregation Reduction in Asphalt Paving with MTV)

  • 권기철
    • 한국도로학회논문집
    • /
    • 제20권4호
    • /
    • pp.1-6
    • /
    • 2018
  • PURPOSES : The objective of this study is to evaluate of the effect of thermal segregation reduction in asphalt paving using material transfer vehicles (MTVs). METHODS : Asphalt paving using MTVs was carried out, and the paved surface temperature was measured using an infrared camera. The amount of thermal segregation was estimated from temperature variations. RESULTS : The transportation of hot mix asphalt (HMA) using dump trucks caused temperature segregation that persisted in the paving surface if an MTV was not used. The average temperature variation was 8.58% in paved surfaces where an MTV was not used. However, the temperature variation was 3.10%, 2.86%, and 4.53% for the base layer, inter-layer, and surface layer, respectively, when an MTV was used. CONCLUSIONS : The use of an MTV in asphalt paving reduces thermal segregation approximately 2.3 times in an asphalt mat via a remixing process and also allows for a smoother work process because the paver never needs to stop to receive HMA. However, MTV equipment without pre-heating devices requires careful temperature control during the warm up process at the MTV during construction in the winter.

Deep reinforcement learning for a multi-objective operation in a nuclear power plant

  • Junyong Bae;Jae Min Kim;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3277-3290
    • /
    • 2023
  • Nuclear power plant (NPP) operations with multiple objectives and devices are still performed manually by operators despite the potential for human error. These operations could be automated to reduce the burden on operators; however, classical approaches may not be suitable for these multi-objective tasks. An alternative approach is deep reinforcement learning (DRL), which has been successful in automating various complex tasks and has been applied in automation of certain operations in NPPs. But despite the recent progress, previous studies using DRL for NPP operations have limitations to handle complex multi-objective operations with multiple devices efficiently. This study proposes a novel DRL-based approach that addresses these limitations by employing a continuous action space and straightforward binary rewards supported by the adoption of a soft actor-critic and hindsight experience replay. The feasibility of the proposed approach was evaluated for controlling the pressure and volume of the reactor coolant while heating the coolant during NPP startup. The results show that the proposed approach can train the agent with a proper strategy for effectively achieving multiple objectives through the control of multiple devices. Moreover, hands-on testing results demonstrate that the trained agent is capable of handling untrained objectives, such as cooldown, with substantial success.