• Title/Summary/Keyword: Continuous Evolutionary Algorithms

Search Result 17, Processing Time 0.022 seconds

Evolutionary Analysis for Continuous Search Space (연속탐색공간에 대한 진화적 해석)

  • Lee, Joon-Seong;Bae, Byeong-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.206-211
    • /
    • 2011
  • In this paper, the evolutionary algorithm was specifically formulated for optimization with continuous parameter space. The proposal was motivated by the fact that the genetic algorithms have been most intensively reported for parameter identification problems with continuous search space. The difference of primary characteristics between genetic algorithms and the proposed algorithm, discrete or continuous individual representation has made different areas to which the algorithms should be applied. Results obtained by optimization of some well-known test functions indicate that the proposed algorithm is superior to genetic algorithms in all the performance, computation time and memory usage for continuous search space problems.

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.

A Study of New Evolutionary Approach for Multiobjective Optimization (다목적함수 최적화를 위한 새로운 진화적 방법 연구)

  • Shim, Mun-Bo;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.987-992
    • /
    • 2002
  • In an attempt to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. In this paper, pareto-based Continuous Evolutionary Algorithms for Multiobjective Optimization problems having continuous search space are introduced. This algorithm is based on Continuous Evolutionary Algorithms to solve single objective optimization problems with a continuous function and continuous search space efficiently. For multiobjective optimization, a progressive reproduction operator and a niche-formation method fur fitness sharing and a storing process for elitism are implemented in the algorithm. The operator and the niche formulation allow the solution set to be distributed widely over the Pareto-optimal tradeoff surface. Finally, the validity of this method has been demonstrated through a numerical example.

Comparison of Three Evolutionary Algorithms: GA, PSO, and DE

  • Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.3
    • /
    • pp.215-223
    • /
    • 2012
  • This paper focuses on three very similar evolutionary algorithms: genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE). While GA is more suitable for discrete optimization, PSO and DE are more natural for continuous optimization. The paper first gives a brief introduction to the three EA techniques to highlight the common computational procedures. The general observations on the similarities and differences among the three algorithms based on computational steps are discussed, contrasting the basic performances of algorithms. Summary of relevant literatures is given on job shop, flexible job shop, vehicle routing, location-allocation, and multimode resource constrained project scheduling problems.

Crack Identification Using Evolutionary Algorithms in Parallel Computing Environment (병렬 환경하의 진화 이론을 이용한 결함인식)

  • Sim, Mun-Bo;Seo, Myeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1806-1813
    • /
    • 2002
  • It is well known that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a classical optimization technique was adopted by previous researchers. That technique overcame the difficulty of finding the intersection point of the superposed contours that correspond to the eigenfrequency caused by the crack presence. However, it is hard to select a trial solution initially for optimization because the defined objective function is heavily multimodal. A method is presented in this paper, which uses continuous evolutionary algorithms(CEAs). CEAs are effective for solving inverse problems and implemented on PC clusters to shorten calculation time. With finite element model of the structure to calculate eigenfrequencies, it is possible to formulate the inverse problem in optimization format. CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising with high parallel efficiency over about 94%.

The virtual penetration laboratory: new developments for projectile penetration in concrete

  • Adley, Mark D.;Frank, Andreas O.;Danielson, Kent T.;Akers, Stephen A.;O'Daniel, James L.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.87-102
    • /
    • 2010
  • This paper discusses new capabilities developed for the Virtual Penetration Laboratory (VPL) software package to address the challenges of determining Penetration Resistance (PR) equations for concrete materials. Specifically, the paper introduces a three-invariant concrete constitutive model recently developed by the authors. The Advanced Fundamental Concrete (AFC) model was developed to provide a fast-running predictive model to simulate the behavior of concrete and other high-strength geologic materials. The Continuous Evolutionary Algorithms (CEA) automatic fitting algorithms used to fit the new model are discussed, and then examples are presented to demonstrate the effectiveness of the new AFC model. Finally, the AFC model in conjunction with the VPL software package is used to develop a PR equation for a concrete material.

A new evolutionary programming technique (여러 부집단을 이용한 새로운 진화 프로그래밍 기법)

  • 임종화;황찬식;한대현;최두현
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.893-896
    • /
    • 1998
  • A new evolutionary programming technique using multiple subpopulations with completely differnt evolution mechanisms is propsed to solve the optimization problems. Three subpopulations, each has different evolution charcteristics and uses different EP algorithms such as SAEP, AEP and FEP, are cooperating with synergy effect in which it increases the possibility to quickly find the global optimum of continuous optimization problems. Subpopulations evolve in differnt manner and the interaction among these leads to global minimum quickly.

  • PDF

A Symbiotic Evolutionary Algorithm for Multi-objective Optimization (다목적 최적화를 위한 공생 진화알고리듬)

  • Shin, Kyoung-Seok;Kim, Yeo-Keun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.1
    • /
    • pp.77-91
    • /
    • 2007
  • In this paper, we present a symbiotic evolutionary algorithm for multi-objective optimization. The goal in multi-objective evolutionary algorithms (MOEAs) is to find a set of well-distributed solutions close to the true Pareto optimal solutions. Most of the existing MOEAs operate one population that consists of individuals representing the entire solution to the problem. The proposed algorithm has a two-leveled structure. The structure is intended to improve the capability of searching diverse and food solutions. At the lower level there exist several populations, each of which represents a partial solution to the entire problem, and at the upper level there is one population whose individuals represent the entire solutions to the problem. The parallel search with partial solutions at the lower level and the Integrated search with entire solutions at the upper level are carried out simultaneously. The performance of the proposed algorithm is compared with those of the existing algorithms in terms of convergence and diversity. The optimization problems with continuous variables and discrete variables are used as test-bed problems. The experimental results confirm the effectiveness of the proposed algorithm.

Crack Identification Based on Synthetic Artificial Intelligent Technique (통합적 인공지능 기법을 이용한 결함인식)

  • Sim, Mun-Bo;Seo, Myeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2062-2069
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

Crack identification based on synthetic artificial intelligent technique (통합적 인공지능 기법을 이용한 결함인식)

  • Shim, Mun-Bo;Suh, Myung-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.182-188
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

  • PDF