• Title/Summary/Keyword: Context-aware routing

Search Result 26, Processing Time 0.02 seconds

Multi-Modal Sensing M2M Healthcare Service in WSN

  • Chung, Wan-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1090-1105
    • /
    • 2012
  • A multi-modal sensing M2M healthcare monitoring system for the continuous monitoring of patients under their natural physiological states or elderly persons with chronic diseases is summarized. The system is designed for homecare or the monitoring of the elderly who live in country side or small rest home without enough support from caregivers or doctors, instead of patient monitoring in big hospital environment. Further insights into the natural cause and progression of diseases are afforded by context-aware sensing, which includes the use of accelerometers to monitor patient activities, or by location-aware indoor tracking based on ultrasonic and RF sensing. Moreover, indoor location tracking provides information about the location of patients in their physical environment and helps the caregiver in the provision of appropriate support.

Intelligent Optimal Route Planning Based on Context Awareness (상황인식 기반 지능형 최적 경로계획)

  • Lee, Hyun-Jung;Chang, Yong-Sik
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

A study on ODDMRP clustering scheme of Ad hoc network by using context aware information (상황정보를 이용한 ad hoc network의 ODDMRP clustering 기법에 관한 연구)

  • Chi, Sam-Hyun;Lee, Kang-Whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.890-893
    • /
    • 2008
  • 자율성 및 이동성 갖는 네트워크 구조의 하나인 MANET(Mobile Ad-Hoc Networks)은 각 node들은 그 특성에 따라서 clustering service을 한다. node의 전송과정 중 path access에 대하여 중요성 또한 강조되고 있다. 일반적인 무선 네트워크 상에서의 node들은 clustering을 하게 되는데 그 과정에서 발생되는 여러 가지 문제점을 가지고 전송이 이루어진다. 모든 node들이 송, 수신상의 전송 범위(Beam forming area)가지고 있으며, 이러한 각 node들의 전송범위 내에 전송이 이루어지는 전통적인 전송기술 mechanism을 찾는다. 이러한 전송상황에서의 송신하는 node와 수신된 node간에 발생되고 있는 중복성의 문제점으로 즉, 상호적용에 의한 네트워크 duplicate(overlapping)이 크게 우려가 되고 있다. 이러한 전송상의 전송 범위 중첩, node간의 packet 간섭현상, packet의 중복수신 및 broadcasting의 storming현상이 나타난다. 따라서 본 논문에서는 상황정보의 속성을 이용한 계층적 상호 head node들의 접근된 위치와 연계되는 전송속도, 보존하고 있는 head node들의 에너지 source value, doppler효과를 통한 head node의 이동방향 등 분석한다. 분석된 방법으로 전송상의 계층적 path가 구성된 경험적 path 속성을 통한 네트워크 connectivity 신뢰성을 극대화 할 뿐만 아니라 네트워크의 전송 범위 duplicate을 사전에 줄일 수 있고 전송망의 최적화를 유지할 수 있는 기법의 하나인 상황정보를 이용한 ad hoc network의 ODDMRP(Ontology Doppler effect-based Dynamic Multicast Routing Protocol) clustering 기법을 제안한다.

  • PDF

A Study of Efficient Set Detour Routing using Context-Aware Matrix (MANET에서 상황인식 매트릭스를 이용한 효율적인 우회경로설정에 관한 연구)

  • Oh, Dong-keun;Oh, Young-jun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.517-518
    • /
    • 2013
  • 모바일 에드 혹 네트워크(Mobile Ad hoc Network)는 이동성을 가진 노드로 구성된 네트워크로서, 통신기반 시설의 지원이 없어도 스스로 통신망을 구축하여 통신한다. 하지만 노드의 이동성으로 인한 토폴로지의 변화가 빈번하여, 라우팅 경로 재설정으로 인한 오버헤드가 생성된다. 오버헤드 생성을 줄이기 위하여 클러스터링을 이용한 연구가 진행되어 왔다. 클러스터가 형성된 MANET에서 클러스터 헤드 노드가 이동함에 따라 클러스터 영역을 벗어나게 되었을 경우, 클러스터 그룹에 속하는 멤버 노드들은 패킷을 보내지 못하며, 클러스터 헤드노드를 선출하지 못하여 사용할 수 없는 노드가 된다. 본 논문에서는 클러스터 헤드 노드가 클러스터 영역을 벗어날 경우, 클러스터 멤버노드의 상황인자 속성 벡터 정보가 유사한 클러스터 헤드노드를 이웃한 주변 클러스터 헤드로부터 검색 및 선택하여, 우회경로를 제공하는 알고리즘을 제안한다. 제안된 알고리즘에서 각 노드는 상황정보 매트릭스를 가지고 있어, 전송 커버리지 영역이 2홉 이내 반경에 있는 노드의 벡터 정보를 저장하게 된다. 클러스터 헤드 노드와의 연결이 끊어 졌을 경우, 클러스터 멤버 노드는 상황정보 매트릭스를 이용하여, 벡터정보가 유사한 클러스터 헤드 노드를 선택하여, 노드 간의 연결성 및 패킷의 전달성이 향상 된다.

  • PDF

Reducing Transmit Power and Extending Network Lifetime via User Cooperation in the Next Generation Wireless Multihop Networks

  • Catovic, Amer;Tekinay, Sirin;Otsu, Toru
    • Journal of Communications and Networks
    • /
    • v.4 no.4
    • /
    • pp.351-362
    • /
    • 2002
  • In this paper, we introduce a new approach to the minimum energy routing (MER) for next generation (NG) multihop wireless networks. We remove the widely used assumption of deterministic, distance-based channel model is removed, and analyze the potentials of MER within the context of the realistic channel model, accounting for shadowing and fading. Rather than adopting the conventional unrealistic assumption of perfect power control in a distributed multihop environment, we propose to exploit inherent spatial diversity of mobile terminals (MT) in NG multihop networks and to combat fading using transmit diversity. We propose the cooperation among MTs, whereby couples of MTs cooperate with each other in order to transmit the signal using two MTs as two transmit antennas. We provide the analytical framework for the performance analysis of this scheme in terms of the feasibility and achievable transmit power reduction. Our simulation result indicate that significant gains can be achieved in terms of the reduction of total transmit power and extension of network lifetime. These gains are in the range of 20-100% for the total transmit power, and 25-90% for the network lifetime, depending on the desired error probability. We show that our analytical results provide excellent match with our simulation results. The messaging load generated by our scheme is moderate, and can be further optimized. Our approach opens the way to a new family of channel-aware routing schemes for multihopNG wireless networks in fading channels. It is particularly suitable for delivering multicast/ geocast services in these networks.

A Study of Energy Efficient Clustering in Wireless Sensor Networks (무선 센서네트워크의 에너지 효율적 집단화에 관한 연구)

  • Lee Sang Hak;Chung Tae Choong
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.923-930
    • /
    • 2004
  • Wireless sensor networks is a core technology of ubiquitous computing which enables the network to aware the different kind of context by integrating exiting wired/wireless infranet with various sensor devices and connecting collected environmental data with applications. However it needs an energy-efficient approach in network layer to maintain the dynamic ad hoc network and to maximize the network lifetime by using energy constrained node. Cluster-based data aggregation and routing are energy-efficient solution judging from architecture of sensor networks and characteristics of data. In this paper. we propose a new distributed clustering algorithm in using distance from the sink. This algorithm shows that it can balance energy dissipation among nodes while minimizing the overhead. We verify that our clustering is more en-ergy-efficient and thus prolongs the network lifetime in comparing our proposed clustering to existing probabilistic clustering for sensor network via simulation.