This paper focuses use context-sensitive spelling error correction using generative adversarial network. Generative adversarial network[1] are attracting attention as they solve data generation problems that have been a challenge in the field of deep learning. In this paper, sentences are generated using word embedding information and reflected in word distribution representation. We experiment with DCGAN[2] used for the stability of learning in the existing image processing and D2GAN[3] with double discriminator. In this paper, we experimented with how the composition of generative adversarial networks and the change of learning corpus influence the context-sensitive spelling error correction In the experiment, we correction the generated word embedding information and compare the performance with the actual word embedding information.
본 논문에서의 문맥의존 철자오류(Context-Sensitive Spelling Error) 교정 기법은 샤논(Shannon)의 노이지 채널 모형(noisy channel model)을 기반으로 한다. 논문에서 제안하는 교정 기법의 향상에는 보간(interpolation)을 사용하며, 일반적인 보간 방법은 확률의 중간 값을 채우는 방식으로 N-gram에 존재하지 않는 빈도를 (N-1)-gram과 (N-2)-gram 등에서 얻는다. 이와 같은 방식은 동일 통계 말뭉치를 기반으로 계산하는데 제안하는 방식에서는 통계 말뭉치와 교정 문서간의 빈도 정보를 이용하여 보간 한다. 교정 문서의 빈도를 이용하였을 때 이점은 다음과 같다. 첫째 통계 말뭉치에 존재하지 않고 교정 문서에서만 나타나는 신조어의 확률을 얻을 수 있다. 둘째 확률 값이 모호한 두 교정 후보가 있더라도 교정 문서를 참고로 교정하게 되어 모호성을 해소한다. 제안한 방법은 기존 교정 모형보다 정밀도와 재현율의 성능향상을 보였다.
This paper is a study on context-sensitive spelling error correction and uses the Korean WordNet (KorLex)[1] that defines the relationship between words as a graph to improve the performance of the correction[2] based on the vector information of the word embedded in the correction technique. The Korean WordNet replaced WordNet[3] developed at Princeton University in the United States and was additionally constructed for Korean. In order to learn a semantic network in graph form or to use it for learned vector information, it is necessary to transform it into a vector form by embedding learning. For transformation, we list the nodes (limited number) in a line format like a sentence in a graph in the form of a network before the training input. One of the learning techniques that use this strategy is Deepwalk[4]. DeepWalk is used to learn graphs between words in the Korean WordNet. The graph embedding information is used in concatenation with the word vector information of the learned language model for correction, and the final correction word is determined by the cosine distance value between the vectors. In this paper, In order to test whether the information of graph embedding affects the improvement of the performance of context- sensitive spelling error correction, a confused word pair was constructed and tested from the perspective of Word Sense Disambiguation(WSD). In the experimental results, the average correction performance of all confused word pairs was improved by 2.24% compared to the baseline correction performance.
The performance of the statistical context-sensitive spelling error correction depends on the quality and quantity of the data for statistical language model. In general, the size and quality of data in a statistical language model are proportional. However, as the amount of data increases, the processing speed becomes slower and storage space also takes up a lot. We suggest the improved statistical language model to solve this problem. And we propose an effective spelling error candidate generation method based on a new statistical language model. The proposed statistical model and the correction method based on it improve the performance of the spelling error correction and processing speed.
문맥의존 철자오류의 교정 방법은 크게 규칙을 이용한 방법과 통계 정보에 기반을 둔 방법으로 나뉘며, 이중 통계적 오류 교정 방법을 중심으로 연구가 진행되었다. 통계적 오류 방법은 문맥의존 철자오류 문제를 어의 중의성 해소 문제로 간주한 방법으로서, 교정 대상 어휘와 대치 후보 어휘로 이루어진 교정 어휘 쌍을 문맥에 따라 분류하는 방법이다. 본 논문에서는 본 연구진의 기존 연구 결과인 교정 어휘 쌍을 이용한 확률 모델의 성능 향상을 위해 어절 n-gram 모델을 기존 모델에 결합하는 방법을 제안한다. 본 논문에서 제안하는 결합 모델은 각 모델을 통해 계산된 문장의 확률을 보간(interpolation)하는 방법과 각각의 모델을 차례대로 적용하는 방법이다. 본 논문에서 제안한 두 가지 결합 모델 모두 기존 모델이나 어절 n-gram만 이용한 모델보다 높은 정확도와 재현율을 보인다.
본 연구에서는 문맥 정보를 함께 고려해야만 인식할 수 있는 단어 오류에 대하여 오류 인식 방법과 수정 후보 생성 방법을 제안한다. 이 문제는 기존의 영어권에서 이미 많이 다룬 연구 주제이다. 본 연구에서는 영어 자동채점 시스템에서 사용하도록 특화된 방법을 제안한다. 문맥 정보를 고려한 단어 오류 검사에서는 자주 혼동되어 사용되는 단어집합(confusion set)을 활용한다. 비영어권 사용자의 작문 특성을 반영하기 위해 기존의 영어권에서 구축한 혼동집합 이외에 자동으로 혼동집합을 구축하여 실험해 보았다. 또한 품사 중의성으로 인해 기존의 구문오류 검사기가 다루지 못하는 오류를 정의하고 오류 인식과 오류수정 후보를 생성하는 방법을 제안한다. 실제 한국어가 모국어이면서 초/중급 작문 수준의 수험생들이 작성한 영어 문장에 대해 평가해 본 결과, 약 70.48%의 f1 값을 얻어 기존의 영어권 결과에 비해 뒤지지 않는 성능을 보였다.
문맥의존 철자오류는 단독으로 사용하면 정확한 어절이지만, 문맥을 고려했을 때 오류인 유형이다. 이를 검색하고 교정하기가 매우 어려우며, 고품질 맞춤법 검사기의 성능을 크게 좌우한다. 한국어 맞춤법 검사기에서의 문맥의존 철자오류는 언어 전문가에 의해 수작업으로 구축된 교정규칙을 사용하는 것이 가장 일반적이다. 이때 규칙을 이용한 방법은 그 특성상 교정 정확도는 매우 높지만, 재현율은 매우 낮다. 본 논문에서는 기존에 연구되었던 교정규칙에서의 선택제약 명사 확장 방식과 조사 제약조건을 완화하는 방법을 통합하여 정확도를 유지하거나 거의 낮추지 않으면서, 재현율을 향상시키는 방법을 제안한다. 또한, 두 방식을 단순하게 통합하지 않고 수의적 부사 삽입과 활용형, 관형형을 고려하여 단계별로 통합하는 방식을 제안하여 평균적으로 정확도를 거의 낮추지 않고 재현율을 약 13% 향상시킨다.
재무 데이터 관리를 위한 자동화된 비지니스 서류 영상 처리 시스템에서 숫자 정보 검색 중 발생한 오류는 심각하여 그 시스템의 가용성 및 성능을 결정한다. 그 동안 자동 맞춤법 교정에 관한 방법론들이 개발되어 정보 검색 시스템 개발에 중요한 역할을 해왔으나 이러한 맞춤법 교정은 알파벳 등 기계학습이 가능하고 사전 형태로 보관이 가능한 기호에 한정되어왔다. 반면에 순수한 마코프 수열에 불과한 숫자들의 순열들은 맞춤법 교정을 위하여 사전적 형태로 보관하여 활용하는 것이 불가능 하다. 본 논문에서는 확률론적 정보 검색 알고리즘의 토대위에 제한적 문맥 인식과 복수의 스트림을 적용한 새로운 형태의 숫자 정정 OCR 모델을 제안하였다. 본 논문에서 제안된 숫자 정정 모델은 기존의 송장 문서 처리 시스템에 구현하였으며 제안된 숫자 정정 모델의 효과를 확인하기 위해 비교 테스트를 실행하였고 테스트 결과 상당한 성능이 개선되었음을 보여 주었다.
한국어 맞춤법 검사기가 교정하는 오류어의 유형은 크게 단순 철자오류와 문맥의존 철자오류로 구분할 수 있다. 이 중 문맥의존 철자오류는 어절(word)단위로 봤을 때는 올바르지만, 문맥을 고려하였을 때 오류가 되는 유형으로, 교정 난도가 매우 높다. 문맥의존 철자오류는 글을 쓰는 사람들도 자주 저지르는 오류이므로, 이를 잘 검색하여 정확하게 교정하는 것이 맞춤법 검사기의 사용자가 갖는 신뢰도에 큰 영향을 미친다. 높은 정확도가 매우 중요하므로, 문맥의존 철자오류의 교정 방법은 대부분 규칙에 기반한다. 반대 급부로 재현율이 매우 낮다는 단점을 갖는다. 문맥의존 철자오류의 교정에서 재현율을 높이기 위한 방법은 크게 언어지식을 이용하여 규칙을 일반화하는 방법과 통계 정보에 기반을 하여 공기 어휘의 제약 조건을 확장하는 방법으로 나뉠 수 있다. 기존 연구는 언어지식을 이용하여 규칙을 일반화하는 다양한 방식을 연구했으나, 최고 성능이 평균 정확도 95.19%, 평균 재현율 37.56%을 보였다. 본 논문에서는 통계정보에 기반한 규칙의 확장 방식을 제안한다. 동적 윈도우를 갖는 조건부확률 모델을 이용한 방법이며, 최고 성능은 평균 정확도 97.23%, 평균 재현율 50.50%을 보여주었다.
본 논문에서 제안하는 문맥의존 철자오류 교정은 통계 정보를 이용한 방법으로 통계적 언어처리에서 가장 널리 쓰이는 샤논(Shannon)이 발표한 노이지 채널 모형(noisy channel model)을 기반으로 한다. 선행연구에서 부족하였던 부분의 성능 향상을 위해 교정대상단어의 오류생성 및 통계 데이터의 저장 방식을 개선하여 Default 연산을 적용한 모델을 제안한다. 선행 연구의 모델은 교정대상단어의 오류생성 시 편집거리의 제약을 1로 하여 교정 실험을 하지만 제안한 모델은 같은 환경에서 더욱 높은 검출과 정확도를 보였으며, 오류단어의 편집거리(edit distance) 제약을 넓게 적용하더라도 신뢰도가 있는 검출과 교정을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.