• Title/Summary/Keyword: Contents classification

Search Result 1,142, Processing Time 0.026 seconds

Improved Method of Suitability Classification for Sesame (Sesamum indicum L.) Cultivation in Paddy Field Soils

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sanghun
    • 한국토양비료학회지
    • /
    • 제50권6호
    • /
    • pp.520-529
    • /
    • 2017
  • In Korea, the largest agricultural lands are paddy fields which have poor infiltration and drainage properties. Recently, Korean government pursuits cultivating upland crops in paddy fields to reduce overproduced rice in Korea. In order to succeed this policy, it is critical to set criteria suitability classification for upland crops cultivating in paddy field soils. The objective of this study was developing guideline of suitability classification for sesame cultivation in paddy field soils. Yields of sesame cultivated in paddy field soils and soil properties were investigated at 40 locations at nationwide scale. Soil properties such as topography, soil texture, soil moisture contents, slope, and drainage level were investigated. The guideline of suitability classification for sesame was determined by multi-regression method. As a result, sesame yields had the greatest correlation with topography, soil moisture content, and slope. Since sesame is sensitive to excessive soil moisture content, paddy fields with well drained, slope of 7-15% and mountain foot or hill were best suit for cultivating sesame. Sesame yields were greater with less soil moisture contents. Based on these results, area of best suitable paddy field land for sesame was 161,400 ha, suitable land was 62,600 ha, possible land was 331,600 ha, and low productive land was 1,075,500 ha. Compared to existing suitability classification, the new guideline of classification recommended smaller area of best or suitable areas to cultivate sesame. This result may suggest that sesame cultivation in paddy field can be very susceptible to soil moisture contents.

맥락정보를 이용한 기록 자동분류시스템 설계 (Design of Automatic Records Classification System Using Contextual Information)

  • 장지숙;이해영
    • 한국기록관리학회지
    • /
    • 제9권1호
    • /
    • pp.151-173
    • /
    • 2009
  • 기록학에서의 분류는 기록 자체의 내용보다는 기록이 생산되고 활용되는 맥락에 초점을 둔다. 본 연구에서는 업무활동이 반영된 기록을 업무활동 분석에 기반하여 구축된 분류체계에, 개별 기록의 내용이 아닌 기록의 집합적 맥락을 중심으로 자동분류 할 수 있는 기록 자동분류시스템을 설계하였다. 기 분류된 기록집합체뿐 아니라 분류체계와 시소러스를 분류기준으로 같이 구축하여 상호보완 할 수 있도록 설계하였으며, 분류대상기록의 범주를 할당한 후 바로, 분류된 기록의 맥락정보를 실시간으로 분류기준에 반영할 수 있는 방안도 포함하였다. 설계된 기록 자동분류시스템은 맥락정보의 품질에 따라 시스템의 성능이 좌우되는 한계가 있지만, 이를 통해 맥락정보를 제대로 충실하게 남길 수 있도록 유도하는 역할을 할 수 있다고 판단되었다.

방향성 정보 척도를 이용한 영상의 픽셀분류 방법에 관한 연구 (A Study on Image Pixel Classification Using Directional Scales)

  • 박중순;김수겸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.587-592
    • /
    • 2004
  • Pixel classification is one of basic issues of image processing. The general characteristics of the pixels belonging to various classes are discussed and the radical principles of pixel classification are given. At the same time, a pixel classification scheme based on image information scales is proposed. The proposed method is overcome that computation amount become greater and contents easily get turned. And image directional scales has excellent anti-noise performance. In the result of experiment. good efficiency is showed compare with other methods.

Subject Independent Classification of Implicit Intention Based on EEG Signals

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제12권3호
    • /
    • pp.12-16
    • /
    • 2016
  • Brain computer interfaces (BCI) usually have focused on classifying the explicitly-expressed intentions of humans. In contrast, implicit intentions should be considered to develop more intelligent systems. However, classifying implicit intention is more difficult than explicit intentions, and the difficulty severely increases for subject independent classification. In this paper, we address the subject independent classification of implicit intention based on electroencephalography (EEG) signals. Among many machine learning models, we use the support vector machine (SVM) with radial basis kernel functions to classify the EEG signals. The Fisher scores are evaluated after extracting the gamma, beta, alpha and theta band powers of the EEG signals from thirty electrodes. Since a more discriminant feature has a larger Fisher score value, the band powers of the EEG signals are presented to SVM based on the Fisher score. By training the SVM with 1-out of-9 validation, the best classification accuracy is approximately 65% with gamma and theta components.

유비쿼터스 컴퓨팅 서비스의 분류 및 평가지표에 대한 연구 (A Study on Classification and Evaluation Criteria of Ubiquitous Computing Service)

  • 한정섭;김형원;이남용;김종배
    • 디지털콘텐츠학회 논문지
    • /
    • 제11권4호
    • /
    • pp.473-478
    • /
    • 2010
  • 유비쿼터스 컴퓨팅 기술을 적용한 서비스들이 지속적으로 발전하고 있으며, 이를 사용하기 위한 다양한 기기들 또한 발전하고 있다. 그러나 유비쿼터스 컴퓨팅 서비스(UCS)에 대한 분류가 모호하고 어떠한 평가지표로써 UCS를 평가해야 할지 판단하기 어렵다. 그러므로 본 연구에서는 UCS의 특징과 분류를 정의하고 이에 기반한 평가지표를 도출한다. 또한 도출한 평가지표의 체크리스트를 제안함으로써 UCS를 사용하기 위한 사용자의 선택을 지원한다.

컨텐츠 기반 P2P 파일 관리를 위한 분류 기법 (A Classification Mechanism for Content-Based P2P File Manager)

  • 민수홍;조동섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.62-64
    • /
    • 2004
  • P2P Systems have grown dramatically in recent years. Now many P2P systems have developed and been confronted by P2P technical challenges. We should consider how to efficiently locate desired resources. In this paper we integrated the existing pure P2P and hybrid P2P model. We try to keep roles of super peer in hybrid and concurrently use pure P2P model for searching resource. In order to improve the existing search mechanism, we present contents-based classification mechanism. Proposed system have the following features. This can forward only query to best peer using RI. Second, it is self-organization. A peer can reconfigure network that it can communicate directly with based on best peer. Third, peers can cluster each other through contents-based classification.

  • PDF

Improving the Subject Independent Classification of Implicit Intention By Generating Additional Training Data with PCA and ICA

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제14권4호
    • /
    • pp.24-29
    • /
    • 2018
  • EEG-based brain-computer interfaces has focused on explicitly expressed intentions to assist physically impaired patients. For EEG-based-computer interfaces to function effectively, it should be able to understand users' implicit information. Since it is hard to gather EEG signals of human brains, we do not have enough training data which are essential for proper classification performance of implicit intention. In this paper, we improve the subject independent classification of implicit intention through the generation of additional training data. In the first stage, we perform the PCA (principal component analysis) of training data in a bid to remove redundant components in the components within the input data. After the dimension reduction by PCA, we train ICA (independent component analysis) network whose outputs are statistically independent. We can get additional training data by adding Gaussian noises to ICA outputs and projecting them to input data domain. Through simulations with EEG data provided by CNSL, KAIST, we improve the classification performance from 65.05% to 66.69% with Gamma components. The proposed sample generation method can be applied to any machine learning problem with fewer samples.

Mapping the Terms of Medicinal Material and Formula Classification to International Standard Terminology

  • Kim, Jin-Hyun;Kim, Chul;Yea, Sang-Jun;Jang, Hyun-Chul;Kim, Sang-Kyun;Kim, Young-Eun;Kim, Chang-Seok;Song, Mi-Young
    • International Journal of Contents
    • /
    • 제7권4호
    • /
    • pp.108-115
    • /
    • 2011
  • The current study aims to analyze the acceptance of International Standard Terminology (IST) related to herbs and formulas used in Korea. It also intends to examine limitations of each term source by linking texts for herbal medicine research and formula research used in schools of oriental medicine with medicinal substance-formula classification names within the IST framework. This study examined 64 medicinal classification names of IST, including synonyms, 41 formula classification names, 65 classification names of "Herbal Medicine Study," 89 medicinal classification names of "Shin's Clinical Herbal Medicine Study," and lastly 83 formula classification names of "Formula Study." Data on their chief virtue, efficacy and characteristics as medicinal substances were extracted from their definitions, and such data were used to perform Chinese character-English mapping using the IST. The outcomes of the mapping were then analyzed in terms of both lexical matching and semantic matching. In terms of classification names for medicinal substances, "Herbal Medicine Study" had 60.0% lexical matching, whereas "Shin's Clinical Herbal Medicine Study" had 48.3% lexical matching. When semantic matching was also applied, "Herbal Medicine Study" showed a value of 87.7% and "Shin's Clinical Herbal Medicine Study" 74.2%. In terms of formula classification names, lexical matching was 28.9% of 83 subjects, and when semantic matching was also considered, the value was 30.1%. When the conceptual elements of this study were applied, some IST terms that are classified with other codes were found to be conceptually consistent, and some terms were not accepted due to different depths in the classification systems of each source.

CPC 기반 특허 기술 분류 분석 모델 (A Study of CPC-based Technology Classification Analysis Model of Patents)

  • 채수현;김장원
    • 한국콘텐츠학회논문지
    • /
    • 제18권10호
    • /
    • pp.443-452
    • /
    • 2018
  • 최근 들어 지식재산권의 확보는 기업의 기술 경쟁력 확보를 위해 점점 더 중요하게 되었다. 특히 특허는 기업의 핵심 기술 및 요소 기술을 포함하고 있기 때문에 특허 분석을 통한 기업 가치 측정 및 경쟁 기술 분야 분석 등의 연구가 활발히 진행되고 있다. 국제특허분류(IPC)를 기반으로 다양한 특허 분석 연구가 진행되었으나, IPC는 최신의 기술 분야를 포함하고 있지 않으며 기술의 상세 분류가 충분하지 않아 기술 분류 정확도가 낮아진다. 이를 보완하기 위해 최신의 기술 분야를 포함하고 상세한 기술 분류를 위한 선진특허분류(CPC)가 개발되었으나 이러한 특징을 고려한 특허 분석 연구가 아직 미흡하다. 본 논문에서는 CPC의 상세 분류체계를 이용하여 특허에 포함된 기술 분류 분석 모델을 제안한다. CPC의 상세 분류체계간의 연관관계 중요도 및 효율성을 고려하여 출원인의 특허를 분석하여 핵심 기술 분류 추출을 통해 기존 IPC 기반의 방법보다 상세하고 정확한 분석이 가능하다. 기존의 IPC 기반의 특허 분석 방법과 비교 평가를 통해 제안 모델이 출원인의 핵심 기술 분류를 분석함에 있어 더 좋은 성능을 보임을 확인하였다.