• Title/Summary/Keyword: Content-Based Music Retrieval

Search Result 45, Processing Time 0.022 seconds

A User Study on Information Searching Behaviors for Designing User-centered Query Interface of Content-Based Music Information Retrieval System (내용기반 음악정보 검색시스템을 위한 이용자 중심의 질의 인터페이스 설계에 관한 연구)

  • Lee, Yoon-Joo;Moon, Sung-Been
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.2
    • /
    • pp.5-19
    • /
    • 2006
  • The purpose of this study is to observe and analyze information searching behaviors of various user groups in different access modes for designing user-centered query interface of content-based Music Information Retrieval System(MIRS). Two expert groups and two non-expert groups were recruited for this research. The data gathering techniques employed in this study were in-depth interviewing, participant observation, searching task experiments, think-aloud protocols, and post-search surveys. Expert users, especially majoring in music theory, preferred to input exact notes one by one using the devices such as keyboard and musical score. On the other hand, non-expert users preferred to input melodic contours by humming.

Music Genre Classification Based on Timbral Texture and Rhythmic Content Features

  • Baniya, Babu Kaji;Ghimire, Deepak;Lee, Joonwhon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.204-207
    • /
    • 2013
  • Music genre classification is an essential component for music information retrieval system. There are two important components to be considered for better genre classification, which are audio feature extraction and classifier. This paper incorporates two different kinds of features for genre classification, timbral texture and rhythmic content features. Timbral texture contains several spectral and Mel-frequency Cepstral Coefficient (MFCC) features. Before choosing a timbral feature we explore which feature contributes less significant role on genre discrimination. This facilitates the reduction of feature dimension. For the timbral features up to the 4-th order central moments and the covariance components of mutual features are considered to improve the overall classification result. For the rhythmic content the features extracted from beat histogram are selected. In the paper Extreme Learning Machine (ELM) with bagging is used as classifier for classifying the genres. Based on the proposed feature sets and classifier, experiment is performed with well-known datasets: GTZAN databases with ten different music genres, respectively. The proposed method acquires the better classification accuracy than the existing approaches.

The Weight Decision of Multi-dimensional Features using Fuzzy Similarity Relations and Emotion-Based Music Retrieval (퍼지 유사관계를 이용한 다차원 특징들의 가중치 결정과 감성기반 음악검색)

  • Lim, Jee-Hye;Lee, Joon-Whoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.637-644
    • /
    • 2011
  • Being digitalized, the music can be easily purchased and delivered to the users. However, there is still some difficulty to find the music which fits to someone's taste using traditional music information search based on musician, genre, tittle, album title and so on. In order to reduce the difficulty, the contents-based or the emotion-based music retrieval has been proposed and developed. In this paper, we propose new method to determine the importance of MPEG-7 low-level audio descriptors which are multi-dimensional vectors for the emotion-based music retrieval. We measured the mutual similarities of musics which represent a pair of emotions expressed by opposite meaning in terms of each multi-dimensional descriptor. Then rough approximation, and inter- and intra similarity ratio from the similarity relation are used for determining the importance of a descriptor, respectively. The set of weights based on the importance decides the aggregated similarity measure, by which emotion-based music retrieval can be achieved. The proposed method shows better result than previous method in terms of the average number of satisfactory musics in the experiment emotion-based retrieval based on content-based search.

Analysis of Storage and Retrieval Results of Audio Sources and Signatures using Blockchain and Distributed Storage System

  • Lee, Kyoung-Sik;Kim, Sang-Kyun
    • Journal of Broadcast Engineering
    • /
    • v.24 no.7
    • /
    • pp.1228-1236
    • /
    • 2019
  • Recently, media platforms such as YouTube and Twitch provide services that can generate personal revenue by utilizing media content produced by individuals. In this regard, interest in the copyright of media content is increasing. In particular, in the case of an audio source, competition for securing audio source copyright is fierce because it is an essential element for almost all media content production. In this paper, we propose a method to store the audio source and its signature using a blockchain and distributed storage system to verify the copyright of music content. To identify the possibility of extracting the audio signature of the audio source and to include it as blockchain transaction data, we implement the audio source and its signature file upload system based on the proposed scheme. In addition, we show the effectiveness of the proposed method through experiments on uploading and retrieving audio files and identify future improvements.

An Efficient Frequent Melody Indexing Method to Improve Performance of Query-By-Humming System (허밍 질의 처리 시스템의 성능 향상을 위한 효율적인 빈번 멜로디 인덱싱 방법)

  • You, Jin-Hee;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.283-303
    • /
    • 2007
  • Recently, the study of efficient way to store and retrieve enormous music data is becoming the one of important issues in the multimedia database. Most general method of MIR (Music Information Retrieval) includes a text-based approach using text information to search a desired music. However, if users did not remember the keyword about the music, it can not give them correct answers. Moreover, since these types of systems are implemented only for exact matching between the query and music data, it can not mine any information on similar music data. Thus, these systems are inappropriate to achieve similarity matching of music data. In order to solve the problem, we propose an Efficient Query-By-Humming System (EQBHS) with a content-based indexing method that efficiently retrieve and store music when a user inquires with his incorrect humming. For the purpose of accelerating query processing in EQBHS, we design indices for significant melodies, which are 1) frequent melodies occurring many times in a single music, on the assumption that users are to hum what they can easily remember and 2) melodies partitioned by rests. In addition, we propose an error tolerated mapping method from a note to a character to make searching efficient, and the frequent melody extraction algorithm. We verified the assumption for frequent melodies by making up questions and compared the performance of the proposed EQBHS with N-gram by executing various experiments with a number of music data.

A Study on the Efficient Feature Vector Extraction for Music Information Retrieval System (음악 정보검색 시스템을 위한 효율적인 특징 벡터 추출에 관한 연구)

  • 윤원중;이강규;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.532-539
    • /
    • 2004
  • In this Paper, we propose a content-based music information retrieval (MIR) system base on the query-by-example (QBE) method. The proposed system is implemented to retrieve queried music from a dataset where 60 music samples were collected for each of the four genres in Classical, Hiphop. Jazz. and Reck. resulting in 240 music files in database. From each query music signal, the system extracts 60 dimensional feature vectors including spectral centroid. rolloff. flux base on STFT and also the LPC. MFCC and Beat information. and retrieves queried music from a trained database set using Euclidean distance measure. In order to choose optimum features from the 60 dimension feature vectors, SFS method is applied to draw 10 dimension optimum features and these are used for the Proposed system. From the experimental result. we can verify the superior performance of the proposed system that provides success rate of 84% in Hit Rate and 0.63 in MRR which means near 10% improvements over the previous methods. Additional experiments regarding system Performance to random query Patterns (or portions) and query lengths have been investigated and a serious instability problem of system Performance is Pointed out.

Emotion Transition Model based Music Classification Scheme for Music Recommendation (음악 추천을 위한 감정 전이 모델 기반의 음악 분류 기법)

  • Han, Byeong-Jun;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.159-166
    • /
    • 2009
  • So far, many researches have been done to retrieve music information using static classification descriptors such as genre and mood. Since static classification descriptors are based on diverse content-based musical features, they are effective in retrieving similar music in terms of such features. However, human emotion or mood transition triggered by music enables more effective and sophisticated query in music retrieval. So far, few works have been done to evaluate the effect of human mood transition by music. Using formal representation of such mood transitions, we can provide personalized service more effectively in the new applications such as music recommendation. In this paper, we first propose our Emotion State Transition Model (ESTM) for describing human mood transition by music and then describe a music classification and recommendation scheme based on the ESTM. In the experiment, diverse content-based features were extracted from music clips, dimensionally reduced by NMF (Non-negative Matrix Factorization, and classified by SVM (Support Vector Machine). In the performance analysis, we achieved average accuracy 67.54% and maximum accuracy 87.78%.

  • PDF

Content-Based Image Retrieval Algorithm Using HAQ Algorithm and Moment-Based Feature (HAQ 알고리즘과 Moment 기반 특징을 이용한 내용 기반 영상 검색 알고리즘)

  • 김대일;강대성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.113-120
    • /
    • 2004
  • In this paper, we propose an efficient feature extraction and image retrieval algorithm for content-based retrieval method. First, we extract the object using Gaussian edge detector for input image which is key frames of MPEG video and extract the object features that are location feature, distributed dimension feature and invariant moments feature. Next, we extract the characteristic color feature using the proposed HAQ(Histogram Analysis md Quantization) algorithm. Finally, we implement an retrieval of four features in sequence with the proposed matching method for query image which is a shot frame except the key frames of MPEG video. The purpose of this paper is to propose the novel content-based image retrieval algerian which retrieves the key frame in the shot boundary of MPEG video belonging to the scene requested by user. The experimental results show an efficient retrieval for 836 sample images in 10 music videos using the proposed algorithm.

A Method of Color KANSEI Information Extraction in Video Data (비디오 데이터에서의 컬러 감성 정보 추출 방법)

  • Choi, Jun-Ho;Hwangi, Myung-Gwon;Choi, Chang;Kim, Pan-Koo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.532-535
    • /
    • 2008
  • The requirement of Digital Culture Content(Movie, Music, Animation, Digital TV, Exhibition and etc.) is increasing so variety and quantity of content is also increasing. The Movie what majority of the digital Content is developing of technology and data. In the result, the efficient retrieval service has required and user want to use a recommendation engine and semantic retrieval methods through the recommendation system. Therefore, this paper will suggest analysing trait element of digital content data, building of retrieval technology, analysing and retrieval technology base on KANSEI vocabulary and etc. For the these, we made a extraction technology of trait element based on semantics and KANSEI processing algorithm based on color information.

  • PDF

Extraction and Indexing Representative Melodies Considering Musical Composition Forms for Content-based Music Information Retrievals (내용 기반 음악 정보 검색을 위한 음악 구성 형식을 고려한 대표 선율의 추출 및 색인)

  • Ku, Kyong-I;Lim, Sang-Hyuk;Lee, Jae-Heon;Kim, Yoo-Sung
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.495-508
    • /
    • 2004
  • Recently, in content-based music information retrieval systems, to enhance the response time of retrieving music data from large music database, some researches have adopted the indexing mechanism that extracts and indexes the representative melodies. The representative melody of music data must stand for the music itself and have strong possibility to use as users' input queries. However, since the previous researches have not considered the musical composition forms, they are not able to correctly catch the contrast, repetition and variation of motif in musical forms. In this paper, we use an index automatically constructed from representative melodies such like first melody, climax melodies and similarly repeated theme melodies. At first, we expand the clustering algorithm in order to extract similarly repeated theme melodies based on the musical composition forms. If the first melody and climax melodies are not included into the representative melodies of music by the clustering algorithm, we add them into representative melodies. We implemented a prototype system and did experiments on comparison the representative melody index with other melody indexes. Since, we are able to construct the representative melody index with the lower storage by 34% than whole melody index, the response time can be decreased. Also, since we include first melody and climax melody which have the strong possibility to use as users' input query into representative melodies, we are able to get the more correct results against the various users' input queries than theme melody index with the cost of storage overhead of 20%.