• Title/Summary/Keyword: Content of steel fiber

Search Result 149, Processing Time 0.022 seconds

The Effects of Steel Fiber on the Fracture Toughness and Strength of Concrete (강섬유보강재가 콘크리트의 파괴인성과 강도에 미치는 영향)

  • 김경수;김재웅;이용우;배주성
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.131-141
    • /
    • 1994
  • This experimental study was performed to lnvestigate the effects of the lergths dnd volume contents of glued hooked steel fiber for the fracture toughness and strength of c oncretc. The notched steel fiber reinforced concrete beams with different flber length(30, 60mm) and fiber volume content(O.0, 0.5, 1.0, 1.5, 2.0%) were tested under 3-point benclmg, md 1 he flexural strengths, fracture energy and CMOD were obtained from the experimental data. The fracture energy v~ds used as d means to evaluate the fracture toughness ot concrete. The results showed that the frdcture toughness and 5trength of conuett. were generally increased ds the content of steel fiber was inc~edsed, arid the length of steel ilber had a great efiect on the flexural strength but little on the compressive itrength and fractule toughness. And also, considering the distributions of steel fiber, workablity and the maxinium size of coarse dqgregates, the optimum content of steel fiber seemed to be about 1.0 '0, and when lts length uias longer the results were somewhat tavorable.

Mechanical Behavior of Steel Fiber Reinforced Lightweight Polymer Concretese (강섬유보강 경량 폴리머 콘크리트의 역학적 거동)

  • Youn, Joon-No;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.63-72
    • /
    • 2005
  • In this study, the physical and mechanical properties of steel fiber reinforced lightweight polymer concrete were investigated experimentally with various steel fiber contents. All tests were performed at room temperature, and stress-strain curve and load-deflection curve were plotted up to failure. The unit weight of steel fiber reinforced lightweight polymer concrete was in the range of $1,020{\sim}1,160\;kg/m^3$, which was approximately $50\%$ of that of the ordinary polymer concrete, The compressive strength, splitting tensile strength, flexural toughness and flexural load-deflection curves after maximum load were shown with increase of steel fiber content. The stress-strain curves of steel fiber reinforced lightweight polymer concrete were bilinear in nature with a small transition zone, Based on these results, steel fiber reinforced lightweight polymer concrete can be widely applied to the polymer composite products.

Compressive and Flexural Properties of Concrete Reinforced with High-strength Hooked-end Steel Fibers (고강도 후크형 강섬유로 보강된 콘크리트의 압축 및 휨 성능)

  • Wang, Qi;Kim, Dong-Hwi;Yun, Hyun-Do;Jang, Seok-Joon;Kim, Sun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.209-217
    • /
    • 2021
  • This paper investigates the effect of high strength hooked-end steel fiber content and aspect ratio on the compressive and flexural performance of concrete. A total of ten mixtures were prepared and tested. Concretes with specific compressive strength of 30 MPa were reinforced with three different aspect ratios (l/d) of steel fibers 64, 67, and 80 and three different percentages of steel fibers 0.25, 0.50, and 0.75% by volume of concrete. Tensile strengths of steel fibers with l/d of 64, 67, and 80 are 2,000, 2,400, and 2,100 MPa, respectively. The compressive and flexural properties of plain and steel fiber-reinforced concrete (SFRC) mixtures were evaluated and compared. The experimental results indicated that the incorporation of high-strength hooked-end steel fibers had significant effects on the compressive and flexural performance of concrete. With the increase of steel fiber content, compressive performances, such as Poisson's ratio and toughness, of concrete were improved. The steel fibers with the least l/d of 67 resulted in a larger enhancement of compressive performances. The residual flexural strength, that is, post-cracking flexural resistance and toughness, of concrete is mainly depended on the dosage and aspect ratio of steel fibers. The residual flexural strength at serviceability (SLS) and ultimate limit state (ULS) defined in fib Model Code 2010 (MC2010) is increased as the fiber content and aspect ratio increase.

Influence of steel fiber contents on corrosion resistance of steel reinforcement (강섬유 혼입량이 철근 부식저항성능에 미치는 영향)

  • Kim, Seong-Do;Moon, Do-Young;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.283-293
    • /
    • 2015
  • In order to evaluate corrosion resistance of steel fiber-reinforced concrete, accelerated chloride migration and surface resistivity tests were conducted. In addition air content of fresh concrete, compressive strength and water absorption were measured for investigating fundamental characteristics of concrete. Two different water-cement ratios(0.44, 0.5) and three steel fiber contents(0.25%, 0.5%, 1%) were considered as variables. Note that all specimens cast with same compaction work. As a results, corrosion resistance decreased as steel fiber contents increased regardless of water-cement ratio when the concrete was compacted with same amount of work done. However, for concrete with same steel fiber content, the lower water-cement ratio showed the better corrosion resistance. It is found that enhancement of fluidity and enough compaction should be done for corrosion resistance of SFRC.

Influence of steel-fiber type and content on electrical resistivity of old-concrete

  • Uygunoglu, Tayfun;Topcu, Ilker Bekir;Simsek, Baris
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Electrical resistivity is a property associated with both the physical and chemical characteristics of concrete. It allows the evaluation of the greater or lesser difficulty with which aggressive substances penetrate the concrete's core before the dissolution of the passive film process and the consequent reinforcement's corrosion begin. This work addresses the steel fiber addition to concrete with two types and various contents from 0% to 1.3%, correlating it with its electrical resistivity. To that effect, 9 different mixes of steel fiber reinforced concrete (SFRC) were produced. The electrical resistivity was evaluated on the on six years aged SFRC by direct measurement at different frequency from 0.1 kHz to 100 kHz. The results indicate that steel fiber content is strongly conditioned by the type and quantity of the additions used. It was also found that long type of fibers has more effect on decreasing the electrical resistivity of concrete than short fibers. Therefore, they increase the corrosion risk of concrete depending on fiber volume fraction and moisture percentage.

Mechanical Properties of Steel Fiber Reinforced Concrete Using Waste Glass (폐유리를 혼입한 강섬유보강 콘크리트의 역학적 특성)

  • 박승범;이봉춘
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1032-1039
    • /
    • 2002
  • Since recycling waste glass as a material for concrete has a great advantage environmentally and economically, the US, Japan and other countries have started recycling waste glass widely and accumulating the technology of manufacturing equipment and its construction. However, there is no practical data on the mechanical property of concrete using waste glass. In this study, the mechanical property of the steel fiber reinforced concrete using waste glass was analyzed in terms of waste glass content(20vo1. %, 40vo1. % as a part of fine aggregate) and steel fiber content(0.5~ 1.5vol.%). The results of this study are as follows : The workability of the concrete including steel fiber and waste glass decreases, as the inclusion rate of waste glass and steel fiber increases. The tensile strength, flexural strength and flexural toughness of the concrete including waste glass increase considerably, as the inclusion rate of steel fiber increases. From the results, the appropriate inclusion rate of steel fiber and waste glass is thought to be 1.0vol. % and 20vo1. %, respectively.

A Study on the Fracture Characteristics of Pre-Cracked Fiber Reinforced Concrete (초기균열이 있는 강섬유보강 콘트리트의 파괴특성)

  • 곽기주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.3
    • /
    • pp.53-63
    • /
    • 1992
  • To investgate the fracture behavior of the steel fiber reinforced concreate, the specimens with different steel fiber contents of 0.0%, 0.5%, 1.0%, 1.5%, were made and notched with differents notch depth ratios of 0.0,0.2, 0.4, 0.6, and the three point bend tests were followed. Test results of 16 different types of above combined specimens were summarized as follows. 1.The load line deflection contents were found to increase 5%, 16%, 19%, respectively, compared to the unnotched specimen with the increased of initial notch depth ratio to 0.2,0.4, 0.6, respectively. 2.The frexural strength were found to decrease 14%, 16%, 21 %, respectively, compared to the unnotched specimen with the increase of initial notch depth ratio to 0.2, 0.4, 0.6,respectively. 3.The stress intensity factors of the steel fiber reinforced concrete were found to increase 1.1 1.5 1.9 times, respectively, compared to the concrete with no steel fiber content with the increase of fiber content to 0.5%, 1.0%, 1.5%, respectively. 4.The influence of the mass of the steel fiber reinforced concrete to the whole fracture energy was found to be minor with 6~8 % contribution. 5.The fracture energy of the steel fiber reinforced concrete, considering the load-deflection curve and concrete mass was found to be approximately 350-380kg m/m$^2$. 6.The regression analysis through the relationship between the compressive(Oc)/tensile (OT) strength and fracture energy(Gf) showed that the fracture energy of the steel fiber reinforced concrete could be predicted as follows. Gf= 19.2662 Oc - 3940.4 Gf= 246.876 OT- 6008.8

  • PDF

Behavior of Steel Fiber Reinforced Concrete Columns under Cyclic Loading

  • Chang Kug-Kwan;Lee Hyun-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.415-423
    • /
    • 2004
  • To improve the brittle column behavior during seismic excitation, benefits of using steel fiber reinforced concrete in columns were investigated. For experimental study, eight specimens were used to evaluate the shear enhancement effect. The variables in this study were amount of shear reinforcement ratio (i.e., 0.26, 0.21 $\%$) and steel fiber volume fraction (i.e., 0.0, 1.0, 1.5, 2.0$\%$). The test results indicated that the maximum enhancement of shear capacity was shown in $1.5\%$ steel fiber content. In addition, to predict the maximum shear strength, equations of ACI 318-99, AIJ MB, NZS 3101, Hirosawa and Priestley were reviewed. From the parametric and regression study, modified Priestely equation was proposed by adding steel fiber effect.

Strength and Mechanical Characteristics of Steel-Fiber Reinforced Concrete (강섬유 보강 콘크리트의 강도 및 역학적 특성연구)

  • 오병환;이형준;백신원;임동환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.175-178
    • /
    • 1990
  • Recently, a growing attention is paid to development of new construction materials. The fiber reinforced Concrete is recognized as one of the most promising new construction materials. A comprehensive experimental study was conducted to explore the mechanical behavior of steel fiber reinforced concrete. The major variables in the experiment were the fiber contents and the lengths of steel fibers. The flexural, tensile, and compressive behavior of steel fiber reinforced concrete were investigated. The present study shows that the strength and ductility are remarkably increased with the increase of fiber content. The rate of strength increase due to steel fibers was found to be the highest in tension, the middle in flexure and the lowest in compression. This indicates that the steel fibers play a major role in increasing the tensile capacity.

  • PDF

Evaluation of Flexural Strength for Normal and High Strength Concrete with Hooked Steel Fibers (갈고리형 강섬유를 혼입한 보통 및 고강도 콘크리트의 휨강도 평가)

  • Oh, Young-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.531-539
    • /
    • 2008
  • The purpose of this study is to investigate the mechanical properties of high strength concretes reinforced with hooked steel fiber. For this purpose, total 36 specimens whose variables are concrete compressive strength, steel fiber aspect ratio, and steel fiber volume contents, are made and tested. From the test results including previous research work, flexural performance of steel fiber reinforced high strength concrete is evaluated in terms of flexural strength and toughness index. Flexural behavior of steel fiber reinforced high strength concrete is enhanced with respect to the fiber volume content, the aspect ratio, and concrete compressive strength. More efforts are devoted to evaluate quantitatively between the flexural strength and the structural parameters such as the fiber volume content, the aspect ratio, and concrete compressive strength.