• 제목/요약/키워드: Content based Retrieval System

검색결과 362건 처리시간 0.027초

내용기반 복합 영상 검색 시스템을 위한 적응적 특징 자가선택과 다중 SOFM 신경망 (Adaptive Feature Selef-selection and Multiple SOFM Neural network for Content-based image Retrieval System)

  • 임승린
    • 한국컴퓨터정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.22-29
    • /
    • 2000
  • 본 논문은 복합 영상을 위한 내용기반 영상 검색의 효율을 극대화하기 위한 방법을 제안하였다. 영상 검색을 효율적으로 수행하기 위해서는 영상 검색의 후보를 축소와 함께 최적의 특징을 선택하는 것이 필요하다 한가지 영상 특징 패턴에 기반 한 검색 시스템으로는 다양한 종류의 복합 영상에 대한 검색과정에서 영상 도메인이 변화할 경우 검색 효과를 극대화할 수가 없다. 본 논문에서는 검색 영상 도메인이 변하면 질의 영상 특성에 따라 최적의 특징 패턴을 시스템 스스로 선택하는 적응적 자가 특징 선택 기법 통하여 복합 영상의 검색 효율을 극대화하였다. 제안된 방안에서는 검색 효율을 개별적인 특징들에 비해 3% 향상시킬 수 있었으며 다중 SOFM신경망을 통하여 검색 후보를 축소하였다

  • PDF

색상과 움직임 정보를 이용한 내용기반 동영상 검색 시스템 (Content-Based Video Retrieval System Using Color and Motion Features)

  • 김소희;김형준;정연구;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(3)
    • /
    • pp.133-136
    • /
    • 2001
  • Numerous challenges have been made to retrieve video using the contents. Recently MPEG-7 had set up a set of visual descriptors for such purpose of searching and retrieving multimedia data. Among them, color and motion descriptors are employed to develop a content-based video retrieval system to search for videos that have similar characteristics in terms of color and motion features of the video sequence. In this paper, the performance of the proposed system is analyzed and evaluated. Experimental results indicate that the processing time required for a retrieval using MPEG-7 descriptors is relatively short at the expense of the retrieval accuracy.

  • PDF

NPFAM: Non-Proliferation Fuzzy ARTMAP for Image Classification in Content Based Image Retrieval

  • Anitha, K;Chilambuchelvan, A
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2683-2702
    • /
    • 2015
  • A Content-based Image Retrieval (CBIR) system employs visual features rather than manual annotation of images. The selection of optimal features used in classification of images plays a key role in its performance. Category proliferation problem has a huge impact on performance of systems using Fuzzy Artmap (FAM) classifier. The proposed CBIR system uses a modified version of FAM called Non-Proliferation Fuzzy Artmap (NPFAM). This is developed by introducing significant changes in the learning process and the modified algorithm is evaluated by extensive experiments. Results have proved that NPFAM classifier generates a more compact rule set and performs better than FAM classifier. Accordingly, the CBIR system with NPFAM classifier yields good retrieval.

An Emotion-based Image Retrieval System by Using Fuzzy Integral with Relevance Feedback

  • Lee, Joon-Whoan;Zhang, Lei;Park, Eun-Jong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.683-688
    • /
    • 2008
  • The emotional information processing is to simulate and recognize human sensibility, sensuality or emotion, to realize natural and harmonious human-machine interface. This paper proposes an emotion-based image retrieval method. In this method, user can choose a linguistic query among some emotional adjectives. Then the system shows some corresponding representative images that are pre-evaluated by experts. Again the user can select a representative one among the representative images to initiate traditional content-based image retrieval (CBIR). By this proposed method any CBIR can be easily expanded as emotion-based image retrieval. In CBIR of our system, we use several color and texture visual descriptors recommended by MPEG-7. We also propose a fuzzy similarity measure based on Choquet integral in the CBIR system. For the communication between system and user, a relevance feedback mechanism is used to represent human subjectivity in image retrieval. This can improve the performance of image retrieval, and also satisfy the user's individual preference.

  • PDF

Image Clustering using Color, Texture and Shape Features

  • Sleit, Azzam;Abu Dalhoum, Abdel Llatif;Qatawneh, Mohammad;Al-Sharief, Maryam;Al-Jabaly, Rawa'a;Karajeh, Ola
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권1호
    • /
    • pp.211-227
    • /
    • 2011
  • Content Based Image Retrieval (CBIR) is an approach for retrieving similar images from an image database based on automatically-derived image features. The quality of a retrieval system depends on the features used to describe image content. In this paper, we propose an image clustering system that takes a database of images as input and clusters them using k-means clustering algorithm taking into consideration color, texture and shape features. Experimental results show that the combination of the three features brings about higher values of accuracy and precision.

모멘트 특성을 이용한 다중 객체 이미지 검색 시스템 구현 (Implementation of System Retrieving Multi-Object Image Using Property of Moments)

  • 안광일;안재형
    • 한국멀티미디어학회논문지
    • /
    • 제3권5호
    • /
    • pp.454-460
    • /
    • 2000
  • 영상과 같은 다양하고 복잡한 데이터 검색은 기존의 키워드를 이용한 검색이 아닌 내용 기반 검색 방법이 요구된다. 본 논문에서는 물체의 위치 이동이나 회전, 크기 변화 등과 같은 각종 변환에 민감하지 않은 불변모멘트(invariant moments)값의 특성을 이용하여 사용자 질의로서 입력된 객체를 효율적으로 검색할 수 있는 시스템을 구현하였다. 영상내의 단일 객체뿐만 아니라 다중 객체들도 효과적으로 검출하기 위해 레이블링(labeling) 알고리즘을 적용해 각각의 객체를 따로 분리하여 불변모멘트를 적용하는 방법을 이용했다. 또한, 검색 시간 단축 및 영상의 효율적인 인덱싱(indexing)을 위해 해싱을 응용한 기법을 적용하였다. 실험결과, precision 85%, recall 23%의 높은 검색효율을 보였고 기존의 전체 영상의 특징을 가지고는 정확히 표현할 수 없는 객체들의 모양을 정확히 표현해 줌으로써 보다 정화한 검색 결과를 얻을 수 있었다.

  • PDF

자동 주석 갱신 및 카테고라이징 기법을 이용한 의미기반 동영상 검색 시스템 (A Semantic-based Video Retrieval System using Design of Automatic Annotation Update and Categorizing)

  • 김정재;이창수;이종희;전문석
    • 한국컴퓨터산업학회논문지
    • /
    • 제5권2호
    • /
    • pp.203-216
    • /
    • 2004
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터 베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다 또한. 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색기법을 통해 가장 유사한 키 프레임을 검색한다. 따라서 의미기반 검색을 통해 비디오 데이터의 검색의 효율을 높일 수 있도록 시스템을 설계한다.

  • PDF

자동 인덱싱 에이전트를 이용한 의미기반 비디오 검색 시스템 (A Semantic-based Video Retrieval System Using the Automatic Indexing Agent)

  • 김삼근;이종희;윤선희;이근수;서정민
    • 한국멀티미디어학회논문지
    • /
    • 제9권1호
    • /
    • pp.127-137
    • /
    • 2006
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터 베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 자동 인덱싱 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색기법을 통해 가장 유사한 키 프레임을 검색한다. 따라서 의미기반 검색을 통해 비디오 데이터의 검색의 효율을 높일 수 있도록 시스템을 제안한다.

  • PDF

음성정보 내용분석을 통한 골프 동영상에서의 선수별 이벤트 구간 검색 (Retrieval of Player Event in Golf Videos Using Spoken Content Analysis)

  • 김형국
    • 한국음향학회지
    • /
    • 제28권7호
    • /
    • pp.674-679
    • /
    • 2009
  • 본 논문은 골프 동영상에 포함된 오디오 정보로부터 검출된 이벤트 사운드 구간과 골프 선수이름이 포함된 음성구간을 결합하여 선수별 이벤트 구간을 검색하는 방식을 제안한다. 전체적인 시스템은 동영상으로부터 분할된 오디오 스트림으로부터 잡음제거, 오디오 구간분할, 음성 인식 등의 과정을 통한 자동색인 모듈과 사용자가 텍스트로 입력한 선수 이름을 발음열로 변환하고, 색인된 데이터베이스에서 질의된 선수 이름과 상응하는 음성구간과 연결되는 이벤트 구간을 찾아주는 검색 모듈로 구성된다. 선수이름 검색을 위해서 본 논문에서는 음소 기반, 단어 기반, 단어와 음소를 결합한 하이브리드 방식을 적용한 선수별 이벤트 구간 검색결과를 비교하였다.

칼라공간과 키워드를 이용한 내용기반 화상검색 시스템 설계 및 구현 (A Design and Implementation of a Content_Based Image Retrieval System using Color Space and Keywords)

  • 김철원;최기호
    • 한국정보처리학회논문지
    • /
    • 제4권6호
    • /
    • pp.1418-1432
    • /
    • 1997
  • 일반적인 내용기반 화상 검색 기법은 검색 인덱스로서 칼라와 텍스쳐를 사용하며, 칼라기법인 칼라히스토그램과 칼라쌍 검색 기법은 공간정보와 텍스트가 부족하다. 따라서 본 논문은 칼라공간과 키워드를 결합한 내용 기반 화상 검색시스템을 설계하고 구현하였다. 화상검색을 위한 전처리기에서는 기존의 HSI(Hue, Saturation, Intensity) 좌표계를 사용하였고, 화상으로부터 색채 영역과 비색채영역을 검출해 내었다. 화상의 크시는 200*N 또는 N*200으로 정규화하고 256칼라로 변환시킨다. 칼라 공간으로 칼라 선택을 결정하기 위해서는 배경과 색채를 위한 2개의 칼라히스토그램을 사용한다. 공간정보는 최대 엔트로피 이산화를 사용함으로써 얻어진다. 키워드는 화상의 종류, 칼라, 모양, 위치, 크기를 선택 가능하도록 했으며, 입력되는 색채에 대해서는 한국 공업 규격의 유채색과 무채색 15가지 색으로 제한하였다. 화상검색 방법은 유사도 검색의 특징 키로 사용하였고, 화상 검색시 특정 성분의 가중치에 따른 검색을 위해 사용자는 질의어 입력시 칼라공간 ${\alpha}(%),\;키워드\;{\beta}(%)$등의 가중치를 화상 내용 특징에 따라 그 값을 조절하여 부여할 수 있는 방안을 개발하였다. 질의 화상에 대한 칼라공간, 키워드와 같은 추출된 특징중 하나의 특징으로 검색 실험한 결과는 가중치를 부여하여 실험한 결과보다 검색 효율이 낮았으며 가중치를 부여한 경우 측정된 파라메타의 평균치는 Precision(0.858), Recall(0.936), RT(1), MT(0)를 보임으로써 칼라공간, 키워드 내용기반 화상 검색 시스템들 보다 높은 검색 효율을 입증해 보였다.

  • PDF