A content-based image retrieval method using color, texture, and shape features is proposed in this paper. A region segmentation technique using PIM(Picture Information Measure) entropy is used for similarity indexing. For segmentation, a color image is first transformed to a gray image and it is divided into n$\times$n non-overlapping blocks. Entropy using PIM is obtained from each block. Adequate variance to perform good segmentation of images in the database is obtained heuristically. As variance increases up to some bound, objects within the image can be easily segmented from the background. Therefore, variance is a good indication for adequate image segmentation. For high variance image, the image is segmented into two regions-high and low entropy regions. In high entropy region, hue-saturation-intensity and canny edge histograms are used for image similarity calculation. For image having lower variance is well represented by global texture information. Experiments show that the proposed method displayed similar images at the average of 4th rank for top-10 retrieval case.
Mobile image retrieval is one of the most exciting and fastest growing research fields in the area of multimedia technology. As the amount of digital contents continues to grow users are experiencing increasing difficulty in finding specific images in their image libraries. This paper proposes a new efficient and effective mobile image retrieval method that applies a weighted combination of color and texture utilizing spatial-color and second order statistics. The system for mobile image searches runs in real-time on an iPhone and can easily be used to find a specific image. To evaluate the performance of the new method, we assessed the iPhone simulations performance in terms of average precision and recall using several image databases and compare the results with those obtained using existing methods. Experimental trials revealed that the proposed descriptor exhibited a significant improvement of over 13% in retrieval effectiveness, compared to the best of the other descriptors.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권7호
/
pp.2683-2702
/
2015
A Content-based Image Retrieval (CBIR) system employs visual features rather than manual annotation of images. The selection of optimal features used in classification of images plays a key role in its performance. Category proliferation problem has a huge impact on performance of systems using Fuzzy Artmap (FAM) classifier. The proposed CBIR system uses a modified version of FAM called Non-Proliferation Fuzzy Artmap (NPFAM). This is developed by introducing significant changes in the learning process and the modified algorithm is evaluated by extensive experiments. Results have proved that NPFAM classifier generates a more compact rule set and performs better than FAM classifier. Accordingly, the CBIR system with NPFAM classifier yields good retrieval.
In this paper we propose a content-based image retrieval method that can search large image databases efficiently by color, texture, and shape content. Quantized RGB histograms and the dominant triple (hue, saturation, and value), which are extracted from quantized HSV joint histogram in the local image region, are used for representing global/local color information in the image. Entropy and maximum entry from co-occurrence matrices are used for texture information and edge angle histogram is used for representing shape information. Relevance feedback approach, which has coupled proposed features, is used for obtaining better retrieval accuracy. Simulation results illustrate the above method provides 77.5 percent precision rate without relevance feedback and increased precision rate using relevance feedback for overall queries. We also present a new indexing method that supports fast retrieval in large image databases. Tree structures constructed by k-means algorithm, along with the idea of triangle inequality, eliminate candidate images for similarity calculation between query image and each database image. We find that the proposed method reduces calculation up to average 92.9 percent of the images from direct comparison.
The emotional information processing is to simulate and recognize human sensibility, sensuality or emotion, to realize natural and harmonious human-machine interface. This paper proposes an emotion-based image retrieval method. In this method, user can choose a linguistic query among some emotional adjectives. Then the system shows some corresponding representative images that are pre-evaluated by experts. Again the user can select a representative one among the representative images to initiate traditional content-based image retrieval (CBIR). By this proposed method any CBIR can be easily expanded as emotion-based image retrieval. In CBIR of our system, we use several color and texture visual descriptors recommended by MPEG-7. We also propose a fuzzy similarity measure based on Choquet integral in the CBIR system. For the communication between system and user, a relevance feedback mechanism is used to represent human subjectivity in image retrieval. This can improve the performance of image retrieval, and also satisfy the user's individual preference.
논문에서는 디스플레이 촬영 영상을 기반으로 하는 콘텐츠 검색 방법을 제안한다. 본 논문에서 제안한 알고리즘은 조명 등의 촬영 조건 변화에 영향을 최소화하기 위해 인접 블록 간 휘도의 증감 방향을 표현하는 이진 맵을 이용한다. 또한 본 논문에서 구현한 콘텐츠 검색 시스템은 제안 알고리즘의 효율성을 높이기 위해 스칼라 값을 이용한 인덱스 기반의 2단계 검색을 수행한다. 알고리즘 비교 실험을 통해 제안 알고리즘에 대한 검증을 수행하고 제안 알고리즘을 이용하여 구현한 콘텐츠 검색 시스템을 기술한다.
A novel characteristic value extraction method based on morphological spatial frequency is proposed. Morphological spatial frequency defined by morphological pattern distribution function is introduced. Superiority of the method was proved for various images by experiment. Furthermore the fact that the proposed method does not need threshold to obtain binary image provides its applicability to content-based image retrieval.
디지털 기술의 급속한 발전에 힘입어 사용자에게 유용한 디지털 영상들이 지수적으로 증가함에 따라, 내용 기반 영상 검색(CBIR ; Content-based Image Retrieval)은 가장 활발한 연구 분야 중 하나가 되었다 다양한 영상 검색 방법은 입력 질의 영상이 주어졌을 때, 질의와 유사한 영상들이 칼라(color)나 질감(texture) 같은 저 수준 특징을 기반으로 영상 데이터베이스에서 검색되도록 제안되어져 왔다. 그러나, 기존 검색 방법의 대부분은 부분 정합에 필요한 복잡도(complexity) 때문에 데이터베이스 내 전체 영상의 부분 영상을 입력 질의 영상으로 했을 경우를 고려하지 않았다. 이 논문에서 우리는 두 영상 사이의 칼라 히스토그램 관계를 이용함으로써 부분 영상 정합에 대한 효율적인 방법을 제시한다. 제안된 접근 방법은 두 단계로 구성되어 있다. 첫 번째 단계는 검색 공간을 pruning시키는 것이고 두 번째 단계는 부분 영상 정합을 통해 후보 영상들의 순위를 정하는 블록 기반 검색을 수행한다. 실험 결과는 pruning없이 부분 영상 정합만 사용하여 검색했을 때 시스템의 응답 시간이 높다고 가정을 하고 제안된 알고리즘의 실현 가능성을 보여준다.
Bu, Hee-Hyung;Kim, Nam-Chul;Yun, Byoung-Ju;Kim, Sung-Ho
Journal of Information Processing Systems
/
제16권4호
/
pp.991-1000
/
2020
We propose a content-based image retrieval system that uses a combination of completed local binary pattern (CLBP) and color autocorrelogram. CLBP features are extracted on a multi-resolution multi-direction filtered domain of value component. Color autocorrelogram features are extracted in two dimensions of hue and saturation components. Experiment results revealed that the proposed method yields a lot of improvement when compared with the methods that use partial features employed in the proposed method. It is also superior to the conventional CLBP, the color autocorrelogram using R, G, and B components, and the multichannel decoded local binary pattern which is one of the latest methods.
컴퓨터와 인터넷의 발달로 정보의 형태가 다양화 되어 문서 위주의 자료들로부터 이미지, 오디오, 비디오, 음성 등의 모습으로 혼합되어 가고 있다. 하지만 대부분의 검색은 문서 위주로 하기 때문에 이미지, 오디오, 비디오 등은 파일의 이름이 명확하게 설정되어 있지 않을 경우에는 검색을 할 수 없다. 이러한 문제점을 해결하기 위해 문서가 아닌 내용을 기반으로 검색하는 방법을 내용 기반 검색이라고 한다. 그리고 이미지의 내용을 기반으로 검색하는 방법을 내용 기반 이미지 검색이라고 한다. 본 논문에서는 HSI 컬러 공간, ART2 알고리즘, SOM 알고리즘을 이용한 내용 기반 이미지 검색 방법을 제안한다. 제안하는 방법은 학습 대상을 선정하기 위해 원 영상의 특징을 분할한다. 그리고 사용자가 학습 대상을 선정하도록 하기 위해 분할된 특징을 SOM 알고리즘에 적용하여 비슷한 특징을 가지는 영상들로 군집화 한다. 군집화된 영상들에 대해 사용자가 학습 대상을 선정하여 ART2 알고리즘에 적용하여 학습한다. 제안한 방법을 적용하여 이미지 검색을 실험한 결과 제안된 방법은 하나의 이미지가 여러 개의 키워드를 가질 수 있기 때문에 이미지에 포함된 정보를 효과적으로 검색하는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.