• 제목/요약/키워드: Content Based Image Retrieval

검색결과 448건 처리시간 0.02초

멀티미디어 저작도구를 이용한 발달장애 진단.평가 시스템 구현연구 (Developmental disability Diagnosis Assessment Systems Implementation using Multimedia Authorizing Tool)

  • 변상해;이재현
    • 벤처창업연구
    • /
    • 제3권1호
    • /
    • pp.57-72
    • /
    • 2008
  • 본 논문에서는 그동안 부분적으로 진행된 발달장애 진단 평가에 관련된 전산처리를 멀티미디어 기법을 응용하여 발달장애 진단 평가분야에 새로운 방법을 제시한다. 발달장애 진단 평가를 위한 멀티미디어 정보는 여러 가지 속성을 지니고 있기 때문에 모든 발달장애 진단 평가 정보에 대한 기술을 사람이 수행해야 할 때는 엄청난 작업량이 수반될 뿐 아니라 동일한 데이터에 대한 기술이 주관에 따라 달라질 수도 있다는 것을 알게 되였다. 특히 발달장애 시스템 구현은 현재의 컴퓨팅 환경에서의 동영상 데이터 처리에 대한 비중의 증가, 텍스트 위주의 데이터에서 시각적인 동영상으로의 데이터 활용의 전이 등 발달장애 데이터가 멀티미디어 환경에 적합한 데이터로의 전이가 필수적이며 사용자 역시 빠른 이해를 위해 시각적 데이터를 선호하기 때문에 본 논문에서는 GUI(Graphics User Interface) 기법을 도입하여 검사 중에 텍스트 명령어는 거의 사용하지 않고도 발달장애 진단 평가를 수행할 수 있게 했다. 특히 발달장애 진단 평가에서 필요한 각종 데이터는 그 속성이 영상, 이미지, 논리연산의 필요성 및 각종 연산이 요구된다. 그래서 본 논문에서는 문제점을 해결하기 위해 편집대상 데이터(Content)에 의해 관련 정보를 검색하는 내용 기반(Content-based)의 검색 기술에 대한 연구를 적용했다.

  • PDF

기울기 히스토그램 및 폐색 탐지를 통한 다중 보행자 추적 (Multiple Pedestrians Tracking using Histogram of Oriented Gradient and Occlusion Detection)

  • 정준용;정병만;이규원
    • 한국정보통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.812-820
    • /
    • 2012
  • 본 논문에서는 지능형 감시 시스템에 부합하는 기울기 히스토그램 및 폐색 추적을 통한 다중보행자 추적 시스템을 제안한다. 먼저, 연속 영상에서 보행자의 특징을 이용하여 보행자를 검출한다. 보행자의 특징을 획득하기 위해 HOG(Histogram of Oriented Gradient)를 기반으로 기울기의 방향성을 이용한 블록별 히스토그램을 생성하고, Linear-SVM(Support Vector Machine)의 학습을 통해 보행자만을 분류한다. 다음으로 보행자의 위치정보를 이용하여 추적을 행한다. 마지막으로 추적이 끝날 경우 내용기반 검색이 가능한 움직임 궤적 디스크립터를 생성한다. 실험을 통해 제안한 방법이 기존 방법보다 빠르고 정확한 움직임 추적에 효과적임을 증명하였다.

필터링에 기반한 고차원 색인구조의 동시성 제어기법의 설계 및 구현 (Design and Implementation of High-dimensional Index Structure for the support of Concurrency Control)

  • 이용주;장재우;김학영;김명준
    • 정보처리학회논문지D
    • /
    • 제10D권1호
    • /
    • pp.1-12
    • /
    • 2003
  • 최근 이미지, 비디오와 같은 멀티미디어 데이터에 대한 효율적인 검색을 위해 많은 다차원 및 고차원 색인 구조들에 대한 연구가 활발히 진행되고 있다. 하지만 기존의 색인 구조의 연구 방향은 검색의 효율을 극대화 하는데 초점을 맞추어 왔으며 최근의 멀티미디어 데이터베이스나 데이터 마이닝 분야와 같은 다수 사용자 환경을 요구하는 환경에서는 부적합한 실정이다. 이에 본 논문에서는 기존의 제시된 차원이 증가하면서 급속하게 성능이 저하되는 문제를 특징 벡터의 시그니쳐를 구성하여 완화시킨 필터링에 기반한 고차원 색인 구조에 동시성 제어기법을 설계 및 구현하여 위스콘신 대학에서 개발한 지속성 객체 저장 시스템인 SHORE 하부저장 시스템과 밀결합 방식으로 통합하였다. 확장된 SHORE 하부저장 시스템은 고차원 데이터에 대한 효율적인 검색 뿐만 아니라 레코드 레벨의 색인 데이터에 대한 동시성 제어를 지원하며 시그니쳐 파일을 모두 메모리에 로딩하는 구조를 개선하여 페이지 레벨의 관리가 가능하다. 아울러 본 논문에서 제시한 확장된 SHOE 하부저장 시스템을 실제 응용 시스템에 적용하기 위해 플랫폼 독립적인 환경을 지원하는 자바 언어를 사용하여 미들웨어 구축 방안을 제시한다. 또한 구축된 미들웨어를 통해 쓰레드 별로 대표적인 내용기반 질의 형태인 포인트질의, 범위질의, k-최근접 질의에 대한 다수 사용자 환경에서의 성능 평가를 수행하였다.

기저 함수의 대칭성을 이용한 저니키 모멘트의 효율적인 계산 방법 (An Efficient Computation Method of Zernike Moments Using Symmetric Properties of the Basis Function)

  • 황선규;김회율
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.563-569
    • /
    • 2004
  • 저니키 모멘트(Zernike moment)는 영상의 표현 능력이 뛰어나기 때문에 객체 인식 또는 내용기반 영상 검색 시스템에서 많이 사용되었으나, 정의식이 복잡하기 때문에 많은 연산량을 필요로 하는 단점이 있다. 저니키 모멘트를 빠르게 계산하는 기존의 방법들은 주로 1차원 실수 방사 다항식을 빠르게 계산하는 방법에 중점을 두었다. 본 논문에서는 저니키 복소 기저 함수의 대칭성을 유도하여 저니키 기저함수를 빠르게 계산하고 입력 영상으로부터 저니키 모멘트를 효율적으로 추출하는 방법을 제안한다. 제안하는 방법은 저니키 기저 함수 계산에 필요한 연산량을 기존 방법의 약 20%로 줄이고, 저니키 모멘트 추출에 필요한 곱셈 연산을 25%로 감소시킨다. 또한, 저니키 모멘트를 특징 벡터로 이용하는 시스템 구현 시 필요한 메모리 요구량도 기존 방법의 25%만을 필요로 한다. 제안하는 방법은 회전 모멘트, 의사 저니키 모멘트, ART(Angular Radial Transform) 등의 계산에도 같은 방식으로 적용될 수 있다.

장면의 유사도 패턴 비교를 이용한 내용기반 동영상 분할 알고리즘 (Content based Video Segmentation Algorithm using Comparison of Pattern Similarity)

  • 원인수;조주희;나상일;진주경;정재협;정동석
    • 한국멀티미디어학회논문지
    • /
    • 제14권10호
    • /
    • pp.1252-1261
    • /
    • 2011
  • 본 논문은 내용기반 동영상 분할을 위한 장면의 유사도 패턴 비교 방법을 제안한다. 동영상 장면 전환의 종류는 크게 급진적 전환과 디졸브(dissolve), 페이드인(fade-in), 페이드아웃(fade-out), 와이프 전환(wipe transition)을 포함하는 점진적 전환 형태로 나눌 수 있다. 제안하는 방법은 모든 종류의 장면 전환 검출 문제를 단지 발생 유무의 문제로 간단 정의하고, 장면 전환 종류는 별도로 구분하지 않는다. 장면 전환을 검출하기 위해서는 프레임간의 유사도를 정의해야 한다. 본 논문에서는 장면 내 유사도(within similarity)와 장면 간 유사도(between similarity)를 정의하며 두 유사도의 통계적 패턴 비교를 통하여 최종적으로 장면 전환을 검출하게 된다. 장면 내 유사도와 장면 간 유사도의 비율을 구하는 방법을 통해 플래시라이트나영상 내 물체 움직임에 대한 거짓 양성 검출을 별도의 후처리 과정 없이도 방지할 수 있음을 확인하였다. 프레임의 특징 값으로는 컬러 히스토그램과 프레임 내 평균 화소값을 이용하였다. TREC-2001, TREC-2002 동영상 셋을 포함한 실험 셋에서 성능을 평가한 결과 제안하는 알고리즘의 경우 총 91.84%의 재현율(recall)과 86.43%의 정확도(precision)의 성능을 보임을 확인할 수 있었다.

하남시 오수발생특성에 대한 연구 (A Study on Sewage Characteristics in Hanam City)

  • 최계운;현지환;이호선
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1317-1322
    • /
    • 2005
  • 하수관거 설계시나 단지개발사업, 그리고 하수관거정비사업과 같이 오수처리시설의 적정 규모 결정을 위해서는 정확한 상수사용량 및 오수발생량 원단위가 요구되지만 국내의 경우 이러한 원단위에 대한 기초자료 부족과 자료의 신빙성 결여로 인해 적정 원단위를 결정하는데 어려움이 있다. 이러한 관점에서 단지개발이 이루어지는 도시에서는 도시의 규모, 입지조건, 기후조건, 생활양식 등 다양한 요인들이 고려된 오수발생패턴 및 발생량 조사가 필요하며, 조사된 원단위는 오수처리시설의 적정 규모 결정뿐 아니라 침입수/유입수 분석 및 하수관거정비에 대한 성과예측에도 활용될 수 있다. 본 연구에서는 현재 단지개발 및 하수관거정비사업이 진행중인 하남시의 표본이 될 수 있는 대표구역을 선정하고 그 지역에서 조사지역을 세부적으로 분류하여 각 지역별 오수발생특성을 분석하였다. 대상지역인 하남시는 총면적의 $97\%$가 자연녹지 및 생산녹지이며, 나머지 $3\%$는 일반주거지역 및 일반 상업지역으로 나뉜다. 그리고 도시계획상 공장지역으로 편성된 부분이 없어 앞으로도 하남시 대부분의 면적이 녹지와 주거/상업지역으로 구성될 것이다. 이러한 하남시의 특성을 고려하여 조사지역은 공장지역을 제외한 일반주거지역, 밀집주거지역, 영업지역으로 분류하였으며 이렇게 분류된 지역은 각각 오수발생패턴 및 오수농도에 대한 조사를 실시하여 오수발생특성을 분석하였고, 조사지역별 인구수 조사와 연계하여 원단위 자료를 추출하였다. 이렇게 조사된 자료들을 통해 침입수/유입수 분석에 요구되는 오수전환율, 야간생활하수량 비율을 산정하였으며, 차후 단지개발 및 관거정비 후에 발생하는 오수 발생특성과 비교분석을 통하여 하남시 지역의 오수발생특성에 대한 신뢰성 있는 자료로 활용될 것으로 기대된다. RMA2 모형을 이용하여 충주댐에서의 물의 흐름을 해석한 결과 옥순대교$\~$청풍대교 구간 사이에 댐 및 지형적 영향으로 인해 잘 발달된 와류가 하도 전체를 통하여 발생되고 있었고 이는 댐 부유물 정체현상이 나타나는 지점과 잘 일치하고 있었다.정함 후 감마분석에 의하여 구하였다. CF:CS 연령모델을 적용한 결과 깊이에 따른 supported $^{210}Pb$와 퇴적 속도는 0.91cm/year 인 것으로 산정 되었다.RS is a more advanced content-based image retrieval system than other systems which support only concepts or image features.방하는 것이 선계기준에 적합한 것으로 나타났다. 밸브 개폐에 따른 수압 변화를 모의한 결과 밸브 개폐도를 적절히 유지하여 필요수량의 확보 및 누수방지대책에 활용할 수 있을 것으로 판단된다.8R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10}{\times}0.797{\times}e^{-0.021s(\%)}$로 나타났다.천성 승모판 폐쇄 부전등을 초래하는 심각한 선천성 심질환이다. 그러나 진단 즉시 직접 좌관상동맥-대동맥 이식술로 수술적 교정을 해줌으로써 좋은 성적을 기대할 수 있음을 보여주

  • PDF

다중 분류기의 판정단계 융합에 의한 얼굴인식 (Multi-classifier Decision-level Fusion for Face Recognition)

  • 염석원
    • 대한전자공학회논문지SP
    • /
    • 제49권4호
    • /
    • pp.77-84
    • /
    • 2012
  • 얼굴인식 기술은 지능형 보안, 웹에서 콘텐츠 검색, 지능로봇의 시각부분, 머신인터페이스 등, 활용이 광범위 하다. 그러나 일반적으로 대상자의 표정과 포즈 변화, 주변의 조명 환경과 같은 문제가 있으며 이와 더불어 원거리에서 획득한 영상의 경우 저해상도를 비롯하여 블러와 잡음에 의한 영상의 열화 등의 여러 가지 어려움이 발생한다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법(Linear Discriminant Analysis)을 이용한 다중 분류기(Classifier)에 의한 판정을 융합하여 얼굴 영상 인식을 수행한다. Fisher 선형판별법은 집단 간 분산을 최대로 하고 집단 내 분산을 최소로 하는 공간으로 선형 투영하는 방법으로, 학습영상의 수가 적을 경우 특이행렬 문제가 발생하지만 포톤카운팅 선형 판별법은 이러한 문제가 없으므로 차원축소를 위한 전 처리 과정이 필요 없다. 본 논문의 다중 분류기는 포톤 카운팅 선형판별법의 유클리드 거리(Euclidean Distance) 또는 정규화된 상관(Normalized Correlation)을 적용하는 판정규칙에 따라 구성된다. 다중분류기의 판정의 융합은 각 분류기 cost의 정규화(Normalization), 유효화(Validation), 그리고 융합규칙(Fusion Rule)으로 구성된다. 각 분류기에서 도출된 cost는 같은 범위로 정규화된 후 유효화 과정에서 선별되고 Minimum, 또는 Average, 또는 Majority-voting의 융합규칙에 의하여 융합된다. 실험에서는 원거리에서 획득한 효과를 구현하기 위하여 고해상도 데이터베이스 영상을 인위적으로 Unfocusing과 Motion 블러를 이용하여 열화하여 테스트하였다. 실험 결과는 다중분류기 융합결과의 인식률은 단일분류기보다 높다는 것을 보여준다.

시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법 (Video Scene Detection using Shot Clustering based on Visual Features)

  • 신동욱;김태환;최중민
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.47-60
    • /
    • 2012
  • 비디오 데이터는 구조화되지 않은 복합 데이터의 형태를 지닌다. 이러한 비디오 데이터의 효율적인 관리 및 검색을 위한 비디오 데이터 구조화의 중요성이 대두되면서 콘텐츠 내 시각적 특징을 기반으로 비디오 씬(scene)을 탐지하고자 하는 연구가 활발히 진행되었다. 기존의 연구들은 주로 색상 정보만을 이용하여 샷(shot) 간의 유사도 평가를 기반한 클러스터링(clustering)을 통해 비디오 씬을 탐지하고자 하였다. 하지만 비디오 데이터의 색상 정보는 노이즈(noise)를 포함하고, 특정 사물의 개입 등으로 인해 급격하게 변화하기 때문에 색상만을 특징으로 고려할 경우, 비디오 샷 혹은 씬에 대한 올바른 식별과 디졸브(dissolve), 페이드(fade), 와이프(wipe)와 같은 화면의 점진적인 전환(gradual transitions) 탐지는 어렵다. 이러한 문제점을 해결하기 위해, 본 논문에서는 프레임(frame)의 컬러 히스토그램과 코너 에지, 그리고 객체 컬러 히스토그램에 해당하는 시각적 특징을 기반으로 동일한 이벤트를 구성하는 의미적으로 유사한 샷의 클러스터링을 통해 비디오 씬을 탐지하는 방법(Scene Detector by using Color histogram, corner Edge and Object color histogram, SDCEO)을 제안한다. SDCEO는 샷 바운더리 식별을 위해 컬러 히스토그램 분석 단계에서 각 프레임의 컬러 히스토그램 정보를 이용하여 1차적으로 연관성 있는 연속된 프레임을 샷 바운더리로 병합한 후, 코너 에지 분석 단계에서 병합된 샷 내 처음과 마지막 프레임의 코너 에지 특징 비교를 통하여 샷 바운더리를 정제하여 최종 샷을 식별한다. 키프레임 추출 단계에서는 샷 내 프레임간 유사도 비교를 통해 모든 프레임과 가장 유사한 프레임을 각 샷을 대표하는 키프레임으로 추출한다. 그 후, 비디오 씬 탐지를 위해, 컬러 히스토그램과 객체 컬러 히스토 그램에 해당하는 프레임의 시각적 특징을 기반으로 상향식 계층 클러스터링 방법을 이용하여 의미적인 연관성을 지니는 샷의 군집화를 통해 비디오 씬을 탐지하는 방법이다. 본 논문에서는 SDCEO의 프로토 타입을 구축하고 3개의 비디오 데이터를 이용한 실험을 통하여 SDCEO의 효율성을 평가하였고 샷 바운더리 식별의 성능의 정확도는 평균 93.3%, 비디오 씬 탐지 성능의 정확도는 평균 83.3%로 만족할만한 성능을 보였다.