• Title/Summary/Keyword: Contamination process

Search Result 744, Processing Time 0.024 seconds

Interface Control to get Higher Efficiency in a-Si:H Solar Cell

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.193-193
    • /
    • 2012
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is the most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. Single-chamber PECVD system for a-Si:H solar cell manufacturing has the advantage of lower initial investment and maintenance cost for the equipment. However, in single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of single-chamber PECVD system. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. In order to remove the deposited B inside of the plasma chamber during p-layer deposition, a high RF power was applied right after p-layer deposition with SiH4 gas off, which is then followed by i-layer, n-layer, and Ag top-electrode deposition without vacuum break. In addition to the p-i interface control, various interface control techniques such as FTO-glass pre-annealing in O2 environment to further reduce sheet resistance of FTO-glass, thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, and hydrogen plasma treatment prior to n-layer deposition, etc. were developed. The best initial solar cell efficiency using single-chamber PECVD system of 10.5% for test cell area of 0.2 $cm^2$ could be achieved by adopting various interface control methods.

  • PDF

Determination of Microbial Contamination in the Process of Rice Rolled in Dried Laver and Improvement of Shelf-life by Gamma Irradiation (김밥 제조공정에서의 미생물 오염도 평가 및 감마선 조사를 이용한 김밥의 보존안정성 향상)

  • 김동호;송현파;김재경;김정옥;이현자;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.991-996
    • /
    • 2003
  • Determination of regional microbial contamination in the process of rice rolled in dried laver (Kimbab) and effects of gamma irradiation on the improvement of hygienic quality and shelf stability were investigated. Total aerobic bacterial distribution of raw materials of Kimbab were; 10$^{6}$ ∼10$^{7}$ CFU/g in dried laver, 10$^3$ CFU/g in cucumber and below 10 CFU/g in steamed rice, ham, fried egg, and salted radish. Total coliform bacteria were 10$^3$ CFU/g in dried laver and detected below detection limit (10 CFU/g) in other raw materials. And it was arithmetically calculated that the levels of total aerobic bacteria and coliform bacteria in Kimbab does not exceed 10$^{5}$ CFU/g and 10$^1$ CFU/g under the aseptic process, respectively. However, microbial contamination levels in just prepared Kimbab in a market were about 10$^{6}$ CFU/g of total aerobic and coliform bacteria. Therefore, it was considered that microbial contamination of Kimbab is mainly originated from environmental uptake during the preparation. The representative media for putrefying bacterial growth were steamed rice. Coliform bacteria were mainly increased in ham and fried egg during storage. The bacteria in dried laver were radio-resistant and survived at 3 kGy of gamma irradiation. Coliform bacteria on EMB agar plate were eliminated at the dose of 2 kGy. The sensory acceptability of 2 kGy irradiated Kimbab was stable and the Kimbab can be preserved for 24 hour at 15$^{\circ}C$. Therefore, it was considered that optimal irradiation dose for radicidation of Kimbab was 2 kGy.

Evaluation of the Level of Microbial Contamination in the Manufacturing and Processing Company of Red Pepper Powder (고춧가루 제조.가공업체의 시설 및 공정별 미생물학적 오염도 평가)

  • Woo, Hye-Im;Kim, Jong-Bae;Choi, Ji-Hee;Kim, Eun-Hye;Kim, Dong-Sul;Park, Kun-Sang;Kim, Eun-Jeong;Eun, Jong-Bang;Om, Ae-Son
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.427-431
    • /
    • 2012
  • This study was conducted to monitor and evaluate microbial contamination during manufacturing process in 6 red pepper powder factories. Red pepper powder samples were taken from manufacturing facilitates, working area and workers' hands to determine sanitary indicator bacteria (SIB) such as aerobic bacteria and coliform group as well as pathogenic indicator bacteria (PIB) such as Staphylococcus aureus, E.coli, Salmonella spp., Listeria monocytogenes, and Bacillus cereus. The results indicated that SIB in primary materials was detected as low as 3 log units and E.coil and Staphylococcus aureus of PIB were detected. After grinding process, aerobic bacteria, fungi, and coliform group increased 52% and 108%, respectively. In final products, PIB was not detected except for one found Staphylococcus aureus by which workers' hands were contaminated. Moreover, UV detectors in all the manufacturers were not able to reduce bacteria. Thus, this data suggest that a stringent safety management be needed to prevent cross contamination, and also reconsider effectiveness of facility.

A Correlation Study on Surface Contamination of Semiconductor Packaging Au Wire by Components of Rinse (반도체 패키지용 Au Wire의 표면처리용 린스 성분에 따른 표면오염 비교 연구)

  • Ha-Yeong Kim;Yeon-Ryong Chu;Jisu Lim;Gyu-Sik Park;Jiwon Kim;Dahee Kang;Yoon-Ho Ra;Suk Jekal;Chang-Min Yoon
    • Journal of Adhesion and Interface
    • /
    • v.25 no.2
    • /
    • pp.63-68
    • /
    • 2024
  • In this study, the contamination of gold(Au) wire according to the types of rinse applied for surface treatment in the wire bonding process is investigated and confirmed. For the surface treatment, rinses containing silicon(Si) or those based on organic materials are mainly employed. To identify their effects, surface treatment is conducted on Au wire using two types of rinse at a 1.0 wt% concentration, referred to as Si-including and Oil-based rinse-coated Au wire. Subsequently, a simulation experiment is performed to verify the reactivity of dust containing Si components that could occur in the semiconductor process. Through optical microscopy (OM) and scanning electron microscopy(SEM) analysis, it is observed that a larger amount of dust is adsorbed on the surface of Si-including rinse-coated Au wire compared with the Oil-based rinse-coated Au wire. This is attributed that the rinse containing Si components is relatively polar, causing polar interactions with dust, which also has polarity. Therefore, it is expected that using a rinse without Si components can reduce contamination caused by dust, thereby decreasing the defect rate in the practical wire bonding process.

Analysis of contamination characteristics of filter cloth in filter press by repeated dehydration of organic sludge and evaluation of ultrasonic cleaning application (유기성 슬러지 반복 탈수에 의한 필터프레스 여과포 오염 특성 분석 및 초음파 세척 적용 평가)

  • Eunju Kim;Cheol-Jin Jeong;Kyung Woo Kim;Tae Gyu Song;Seong Kuk Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.2
    • /
    • pp.15-25
    • /
    • 2024
  • In this study, the regeneration effect of pressurized water and ultrasonic cleaning was investigated for contaminated filter cloth from the sewage sludge filter press process. For this purpose, contaminated filter cloth was collected from a 3-ton sewage sludge hydrothermal carbon treatment filter press. First, the contamination characteristics were analyzed. According to the location of the filter cloth, air permeability and unit mass were measured, and compared with the values of a new filter cloth. Next, the results were mapped over the entire area to evaluate the contamination characteristics. Finally, pressure cleaning at 3 bar and ultrasound at frequencies of 34, 76, 120, and 168 kHz were performed on the contaminated filter cloth. In addition, the cleaning efficiency was evaluated by 3 levels of contamination degree. As a result, pore contamination occurred mainly at the bottom and both sides of the filter cloth, where the filter material was continuously injected and compressed. Surface contamination appeared evenly over the entire area. As a result of washing, air permeability increased by 1.3-3.1%p and contaminant removal was by 2.7-4.4% under pressure. In ultrasonic cleaning, air permeability increased by 12.5-61.5%p and contaminants were removed by 2.7-29.2%. In ultrasonic cleaning the lower the frequency, the higher air permeability and contaminant removal rate. Also, The higher pore contamination level, the better the air permeability improvement and contaminant removal.

Effect of Spinal Cord Removal before or after Splitting and Washing on CNST Decontamination of Beef Carcasses

  • Lim, D.G.;Kim, D.H.;Lee, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1770-1776
    • /
    • 2007
  • Beef carcasses were examined to explore the effects of spinal cord removal and washing on central nervous system tissue (CNST) decontamination of the surface during the slaughtering process. A total of 15 carcasses were split by sawing centrally down the vertebral column and left sides of split carcasses were used for analysis. Samples were collected by swabbing the surface from 4 defined parts on the interior and 4 on the exterior of carcasses from the abattoir and analyzed using an ELISA-based test. The results showed that automatic and manual spray washing decreased CNST contamination, especially on the interior ventral parts of carcass surfaces (p<0.01), but did not decrease CNST on the interior dorsal parts. Increasing washing time to 60 s did not affect the reduction of CNST contamination. Samples following spinal cord removal prior to splitting showed lower calculated levels of "risk material" than the stated limit of detection (0.1%) of the ELISA kit on interior and exterior carcass parts (p<0.01). Therefore, spinal cord removal prior to splitting could be a very effective way to minimize CNST contamination of beef carcasses.

Bioremediation of metal contamination groundwater by engineered yeasts expressing phytochelatin synthase (Phytochelatin synthase 발현을 통한 효모의 중금속 처리에 관한 연구)

  • ;;;Wilfred Chen
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.290-292
    • /
    • 2004
  • Heavy metal contamination has been increased in aqueous environments near many industrial facilities, such as metal plating facilities, mining operations, and tanneries. The soils in the vicinity of many military bases are also reported to be contaminated and pose a risk of groundwater and surface water contamination with heavy metals. The biological removal of metals through bioaccumulation has distinct advantages over conventional methods; the process rarely produces undesirable or deleterious chemical byproducts, it is highly efficient, easy to operate and cost-effective in the treatment of large volumes of wastewater containing toxic heavy metals. In addition, a recent development of molecular biology shed light on the enhancing the microorganism's natural remediation capability as well as improving the current biological treatment. In this study, characteristics of the cell growth and heavy metal accumulation by Saccharomyces cerevisiae strains expressing phytochelatin syntahse (PCS) gene were studied in batch cultures. The AtCRFI gene was demonstrated to confer substantial increases in metal tolerance in yeast. PCS-expressing cells tolerated more Cd$^{2+}$ than controls.

  • PDF

Heavy Metal Contamination and Process for Its Removal in the Vicinity of the Dalsung Cu-W Mine (달성광산(達成鑛山) 주변지역(周邊地域)에서의 중금속오염(重金屬汚染)과 이의 제거방안(除去方案))

  • Kim, Kyoung-Woong;Hong, Young-Kook;Kim, Taik-Nam
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.57-63
    • /
    • 1996
  • The Dalsung copper-tungsten mine in the Taegu area, Korea was closed in 1975 and may be the sources of the heavy metal contamination in the tributary system and soil-plant system due to the mine drainage derived from the mine wastes and tailings. To examine the degree and extent of heavy metal contamination in the vicinity of Dalsung mine area, stream water and soil samples were taken and analyzed for heavy metals by ICP-AES and AAS. Highly contaminated soils are found near the Lower Tunnel No.0 ranging up to $1760{\mu}g/g$ As, $2060{\mu}g/g$ Cu, $1120{\mu}g/g$ Pb and 346 ${\mu}g/g$ Zn. From the results of the sequential extraction methods for the metal speciation, the heavy metals in soils may be derived from soil parent materials and acid mine drainage. With the processes for the heavy metal removal, most of the heavy metal ions in the acid mine drainage are removed by being exchanged with Ca ions held by the bentonite, hydroxyapatite and calcium hydoxide.

  • PDF

The Status of Soil and Groundwater Contamination in Japan and Case Studies of their Remediation (일본의 토양지하수오염 및 복원사례)

  • Komai, Takeshi;Kawabe, Yoshishige
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.25-39
    • /
    • 2003
  • Risk and exposure assessment for subsurface environment is very important for both aspects of health and environmental protection as well as making decision of remedial goal for engineering activities. Exposure due to hazardous chemicals in the subsurface environment is essential to assess risk lev121 to individual person, especially from soil and groundwater environmental media. In this paper, the status of soil and groundwater contamination is presented to discuss on the problem for environmental risk assessment. The methodologies of fate and exposure models are also discussed by conducting the case studies of exposure assessment for heavy metals, organic compounds, and dioxin compounds. In addition, the structure of exposure models and available data for model calculation are examined to make clear more realistic exposure scenarios and the application to the practical environmental issues. Three kinds of advanced remediation techniques for soil and groundwater contamination are described in this paper, The most practical method for VOCs is the bio-remediation technique in which biological process due to consortium of microorganisms can be applied. For more effective remediation of soil contaminated by heavy metals we have adopted the soil flushing technique and clean-up system using electro-kinetic method. We have also developed the advanced techniques of geo-melting method for soil contaminated by DXNs and PCB compounds. These techniques are planed to introduce and to apply for a lot of contaminated sites in Japan.

  • PDF

Effect of CO in Anode Fuel on the Performance of Polymer Electrolyte Membrane Fuel Cell (수소연료 중 일산화탄소의 고분자전해질 연료전지에 대한 영향)

  • Kwon, Jun-Taek;Kim, Jun-Bum
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.291-298
    • /
    • 2008
  • Carbon monoxide(CO) is one of the contamination source in reformed hydrogen fuel with an influence on performance of polymer electrolyte membrane fuel cell(PEMFC). The studies of CO injection presented here give information about poisoning and recovery processes. The aim of this research is to investigate cell performance decline due to carbon monoxide impurity in hydrogen. Performance of PEM fuel cell was investigated using current vs. potential experiment, long time(10 hours) test, cyclic feeding test and electrochemical impedance spectra. The concentrations of carbon monoxide were changed up to 10 ppm. Performance degradation due to carbon monoxide contamination in anode fuel was observed at high concentration of carbon monoxide. The CO gas showed influence on the charge transfer reaction. The performance recovery was confirmed in long time test when pure hydrogen was provided for 1 hour after carbon monoxide had been supplied. The result of this study could be used as a basis of various reformation process design and fuel quality determination.