• Title/Summary/Keyword: Contaminated soil remediation

Search Result 575, Processing Time 0.024 seconds

Comparative Analysis of the Phyto-compounds Present in the Control and Experimental Peels of Musa paradisiaca used for the Remediation of Chromium Contaminated Water

  • Kaniyappan, Vidhya;Rathinasamy, Regina Mary;Manivanan, Job Gopinath
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.166-176
    • /
    • 2022
  • Banana peels are also widely used as bio-adsorbent in the removal of chemicals contaminants and heavy metals from water and soil. GC-MS plays an essential role in the phytochemical analysis and chemo taxonomic studies of medicinal plants containing biologically active components. Intrinsically, with the use of the flame ionization detector and the electron capture detector which have very high sensitivities, Gas chromatography can quantitatively determine materials present at very low concentrations and most important application is in pollution studies. In the present study banana peels were used as bio-adsorbent to remediate the heavy metal contaminated water taken from three different stations located around the industrial belts of Ranipet, Tamilnadu, India. The AAS analysis of the samples shows a decrement of chromium concentration of 98.93%, 96.16% and 96.5% in Station 1, 2 and 3 respectively which proves the efficiency of the powdered peels of Musa paradisiaca. The GC-MS analysis of the control and treated peels of Musa paradisiaca reveals the presence of phytochemicals like Acetic Acid, 1-Methylethyl Ester, DL-Glyceraldehyde Dimer, N-Hexadecanoic Acid, 3-Decyn-2-Ol, 26-Hydroxy, Cholesterol, Ergost-25-Ene-3,5,6,12-Tetrol, (3.Beta.,5.Alpha.,6.Beta.,12.Beta.)-, 1-Methylene-2b-Hydroxymethyl-3, and 3-Dimethyl-4b-(3-Methylbut-2-Enyl)-Cyclohexane in the control banana peels. The banana peels which were used for the treatment reveals the changes and alteration of the phytochemicals. It is concluded that the alteration in phytochemicals of the experimental banana peels were due to adsorption of chromium heavy metal from the sample.

Adsorption Characteristics Evaluation of Natural Zeolite for Heavy-metal Contaminated Material Remediation (중금속 오염물질 정화를 위한 천연제올라이트의 흡착특성)

  • Shin, Eun-Chul;Park, Jeong-Jun;Jeong, Cheol-Gyu;Kim, Sung-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.59-67
    • /
    • 2014
  • The amount of the contaminants that can be adsorbed on the drain was evaluated for the effective remediation of the contaminated soil, and the contaminants adsorptivity of the drain was evaluated by comparing the isothermal adsorption model after carrying out the contaminants adsorption test of the reactants coated on the surface of the drain. The reactant used in the experiment is a natural zeolite, and the contaminants are copper, lead and cadmium. The results that Freundlich and Langmuir adsorption isotherm model are compared to the adsorption amount according to the change of the initial concentration by the contaminants. As a result of the component analysis, because Si, Al and O are contained approximately 28%, 11% and 48%, respectively, it is identified that the material coated on the surface of the drain is the component of the zeolite which is the reactant for the adsorption of the heavy-metal (Cu, Pb, Cd) contaminants. The heavy-metal adsorption kinetic of the zeolite which is the reactant was decreased in order of lead, copper and cadmium. The important factor of the performance evaluation of the adsorbent is the reaction rate, and if zeolite is used as the reactant in the relationship between the maximum amount of adsorption and reaction rate, it can be utilized as the design factor that determine the removal order of the complex heavy-metal. In other words, because the maximum adsorption quantity of lead is smaller compared to copper but the reaction rate is relatively fast, it can be primarily removed, and copper can be removed after removing the lead. It was analyzed that Cadmium can be finally removed after that other heavy-metal is removed.

Improvement of Fluid Penetration Efficiency in Soil Using Plasma Blasting (플라즈마 발파를 이용한 토양 내 유체의 침투 효율 개선)

  • Baek, In-Joon;Jang, Hyun-Shic;Song, Jae-Yong;Lee, Geun-Chun;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.433-445
    • /
    • 2021
  • Plasma blasting by high voltage arc discharge were performed in laboratory-scale soil samples to investigate the fluid penetration efficiency. A plasma blasting device with a large-capacity capacitor and columnar soil samples with a diameter of 80 cm and a height of 60 cm were prepared. Columnar soil samples consist of seven A-samples mixed with sand and silt by ratio of 7:3 and three B-samples by ratio of 9:1. When fluid was injected into A-sample by pressure without plasma blasting, fluid penetrated into soil only near around the borehole, and penetration area ratio was less than 5%. Fluid was injected by plasma blasting with three different discharge energies of 1 kJ, 4 kJ and 9 kJ. When plasma blasting was performed once in the A-samples, penetration area ratios of the fluid were 16-25%. Penetration area ratios were 30-48% when blastings were executed five times consecutively. The largest penetration area by plasma blasting was 9.6 times larger than that by fluid injection by pressure. This indicates that the higher discharge energy of plasma blasting and the more numbers of blasting are, the larger are fluid penetration areas. When five consecutive plasma blasting were carried out in B-sample, fluid penetration area ratios were 33-59%. Penetration areas into B-samples were 1.1-1.4 times larger than those in A-samples when test conditions were the same, indicating that the higher permeability of soil is, the larger is fluid penetration area. The fluid penetration radius was calculated to figure out fluid penetration volume. When the fluid was injected by pressure, the penetration radius was 9 cm. Whereas, the penetration radius was 27-30 cm when blasting were performed 5 times with energy of 9 kJ. The radius increased up to 333% by plasma blasting. All these results indicate that cleaning agent penetrates further and remediation efficiency of contaminated soil will be improved if plasma blasting technology is applied to in situ cleaning of contaminated soil with low permeability.

A Study of Heavy Metal-Contaminated Soil Remediation with a EDTA and Boric acid Composite(I): Pb (EDTA와 붕산 혼합용출제를 이용한 중금속으로 오염된 토양의 처리에 관한 연구(I): 납)

  • Lee Jong-Yeol;Kim Yong-Soo;Kwon Young-Ho;Kong Sung-Ho;Park Shin-Young;Lee Chang-Hwan;Sung Hae-Ryun
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • To choose a organic acid and in-organic acid composite which is the most effective in soil-flushing process cleaning lead-contaminated sites, lead removal rates were investigated in the experiments with some organic acids; 0.01M of EDTA showed the highest lead-extraction rate ($69.4\%$) compared to the other organic acids. Furthermore, the lead removal rates were measured with 0.01M of EDIA and 0.1M of in-organic acid ; a EDTA and boric acid composite showed the highest lead-extraction rate ($68.8\%$) at pH5 compared to the other composites. As the concentration of boric acid was increased from 0.1M to 0.4M in a 0.01M of EDTA and boric acid composite, lead removal rate was decreased from $68\%\;to\;45\%$. But as the concentration of EDTA was increased from 0.01M to 0.04M in a EDTA and 0.1M of boric acid composite, permeability was decreased from $6.98{\times}10^{-4}cm/sec$ (0.01M of EDTA) to $5.99{\times}10^{-4}cm/sec$ (0.04M of EDTA). However, permeability was increased from $4.41{\times}10^{-4}cm/sec$ (0.03M of EDTA) to $6.26{\times}10^{-4}cm/sec$ (0.03M of EDTA and 0.1M of boric acid composite). indicating EDTA could increase lead dissolution/extraction rate and decrease permeability. In this system, lead remediation rate is the function of lead dissolution rate from soils and permeability of the composite into soils, and the optimized [EDTA]/[Boric acid] ratio is [0.01M]/[0.1M].

A Study about Development of Hydrogen Peroxide Stabilizer in Modified Fenton Reaction Using Anion Surfactant (음이온 계면활성제를 사용한 modified Fenton 반응의 과수안정제 개발에 관한 연구)

  • Kim, Han Ki;Park, Kang Su;Kim, Jeong Hwan;Park, Joo Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.377-382
    • /
    • 2011
  • In this study, hydrogen peroxide is stabilized in modified Fenton reaction to improve the soil remediation. Phenanthrene, which is the typical compound in PAHs, was spiked into soil samples to copy the original contaminated site. Anionic surfactant, SDS (Sodium dodecyl sulfate) was used for hydrogen peroxide stabilizer. 4 mM of Fe(II), 5~50 mM of SDS and 102.897 mM of $H_2O_2$ was injected into soil samples which is contaminated by 125 mg/kg of phenanthrene to analyze decomposition rate of phenanthrene in modified Fenton reaction. In condition which SDS was injected 30 mM, decomposition rate of phenanthrene has best efficiency as 95% and in condition which SDS was injected over 30 mM, decomposition rate is lower than SDS 30 mM because SDS enacted as scavenger in the system. Results which assess the change of hydrogen peroxide concentration after injecting hydrogen peroxide stabilizer showed that hydrogen peroxide concentration was 14.6995 mM so that is stabilized at Fe(II) 2 mM condition in 48 hours. On the other hand, hydrogen peroxide is not stable in Fe(III) condition. SDS concentration was fixed and iron concentration was changed 2~8 mM to find out optimize proportion between iron concentration and SDS concentration in modified Fenton reaction. Consequentially, in condition of which Fe(II) 4 mM and SDS 30 mM, reaction has the highest removal rate as 95%.

A Study on Remediation of Explosives-Contaminated Soil/Ground Water using Modified Fenton Reaction and Fenton-like Reaction (Modified Fenton Reaction과 Fenton-like Reaction을 이용한 화약류 오염 토양/지하수의 처리에 관한 연구)

  • Hur, Jung-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.153-160
    • /
    • 2005
  • There have been large areas of soil contaminated with high levels of explosives. For this experimental work, 2,4,6-trinitrotoluene (TNT) was tested as a representative explosive contaminant of concern in both aqueous and soil samples and its removal was evaluated using three different chemical treatment methods: 1) the classical Fenton reaction which utilizes hydrogen peroxide ($H_2O_2$) and soluble iron at pH less than 3; 2) a modified Fenton reaction which utilizes chelating agents, $H_2O_2$, and soluble iron at pH 7; and 3) a Fenton-like process which utilizes iron minerals instead of soluble iron and $H_2O_2$, generating a hydroxyl radical. Using classic Fenton reaction, 93% of TNT was removed in 20 h at pH 3 (soil spiked with 300 mg/L of TNT, 3% $H_2O_2$ and 1mM Fe(III)), whereas 21% removed at pH 7. The modified Fenton reaction, using nitrilotriacetic acid (NTA), oxalate, ethylenediaminetetraacetic acid (EDTA), acetate and citrate as representative chelating agents, was tested with 3% $H_2O_2$ at pH 7 for 24 h. Results showed the TNT removal in the order of NTA, EDTA, oxalate, citrate and acetate, with the removal efficiency of 87%, 71%, 64%, 46%, and 37%, respectively, suggesting NTA as the most effective chelating agent. The Fenton-like reaction was performed with water contaminated with 100 mg/L TNT and soil contaminated with 300 mg/L TNT, respectively, using 3% $H_2O_2$ and such iron minerals as goethite, magnetite, and hematite. In the goethite-water system, 33% of TNT was removed at pH 3 whereas 28% removed at pH 7. In the magnetite-water system, 40% of TNT was removed at pH 3 whereas 36% removed at pH 7. In the hematite-water system, 40% of TNT was removed at pH 3 whereas 34% removed at pH 7. For further experiments combining the modified Fenton reaction with the Fenton-like reaction, NTA, EDTA, and oxalate were selected with the natural iron minerals, magnetite and hematite at pH 7, based on the results from the modified Fenton reaction. As results, in case magnetite was used, 79%, 59%, and 14% of TNT was removed when NTA, oxalate, and EDTA used, respectively, whereas 73%, 25%, and 19% removed in case of hematite, when NTA, oxalate, and EDTA used, respectively.

Comparison of Various Single Chemical Extraction Methods for Predicting the Bioavailability of Arsenic in Paddy Soils

  • Go, Woo-Ri;Jeong, Seon-Hee;Kunhikrishnan, Anitha;Kim, Gyeong-Jin;Yoo, Ji-Hyock;Cho, Namjun;Kim, Kwon-Rae;Kim, Kye-Hoon;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.464-472
    • /
    • 2014
  • The Codex Committee of Contaminants in Food (CCCF) has been discussing a new standard for arsenic (As) in rice since 2010 and a code of practice for the prevention and reduction of As contamination in rice since 2013. Therefore, our current studies focus on setting a maximum level of As in rice and paddy soil by considering bioavailability in the remediation of As contaminated soils. This study aimed to select an appropriate single chemical extractant for evaluating the mobility of As in paddy soil and the bioavailability of As to rice. Nine different extractants, such as deionized water, 0.01 M $Ca(NO_3)_2$, 0.1 M HCl, 0.2 M $C_6H_8O_7$, 0.43 M $HNO_3$, 0.43 M $CH_3COOH$, 0.5 M $KH_2PO_4$, 1 M HCl, and 1 M $NH_4NO_3$ were used in this study. Total As content in soil was also determined after aqua regia digestion. The As extractability of the was in the order of: Aqua regia > 1 M HCl > 0.5 M $KH_2PO_4$ > 0.43 M $HNO_3$ > 0.2 M $C_6H_8O_7$ > 0.1 M HCl > 0.43 M $CH_3COOH$ > deionized water > 1 M $NH_4NO_3$ > 0.01 M $Ca(NO_3)_2$. Correlation between soil extractants and As content in rice was in the order of : deionized water > 0.01 M $Ca(NO_3)_2$ > 0.43 M $CH_3COOH$ > 0.1 M HCl > 0.5 M $KH_2PO_4$ > 1 M $NH_4NO_3$ > 0.2 M $C_6H_8O_7$ > 0.43 M $HNO_3$ > 1M HCl > Aqua regia. BCF (bioconcentration factor) according to extractants was in the order of : 0.01M $Ca(NO_3)_2$ > 1 M $NH_4NO_3$ > deionized water > 0.43 M $CH_3COOH$ > 0.1 M HCl > 0.43 M $HNO_3$ > 0.2 M $C_6H_8O_7$ > 0.5 M $KH_2PO_4$ > 1 M HCl > Aqua regia. Therefore, 0.01 M $Ca(NO_3)_2$ ($r=0.78^{**}$) was proven to have the greatest potential for predicting As bioavailability in soil with higher correlation between As in rice and the extractant.

Effects of Soil Temperature on Biodegradation Rate of Diesel Compounds from a Field Pilot Test Using Hot Air Injection Process (고온공기주입 공법 적용시 지중온도가 생분해속도에 미치는 영향)

  • Park Gi-Ho;Shin Hang-Sik;Park Min-Ho;Hong Seung-Mo;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.45-53
    • /
    • 2005
  • The objective of this study is to evaluate the effects of changes in soil temperature on biodegradation rate of diesel compounds from a field pilot test using hot air injection process. Total remediation time was estimated from in-situ biodegradation rate and temperature for optimum biodegradation. All tests were conducted by measuring in-situ respiration rates every about 10 days on highly contaminated area where an accidental diesel release occurred. The applied remediation methods were hot air injection/extraction process to volatilize and extract diesel compounds followed by a bioremediation process to degrade residual diesels in soils. Oxygen consumption rate varied from 2.2 to 46.3%/day in the range of 26 to $60^{\circ}C$, and maximum $O_2$ consumption rate was observed at $32.0^{\circ}C$. Zero-order biodegradation rate estimated on the basis of oxygen consumption rates varied from 6.5 to 21.3 mg/kg-day, and the maximum biodegradation rate was observed at $32^{\circ}C$ as well. In other temperature range, the values were in the decreasing trend. The first-order kinetic constants (k) estimated from in-situ respiration rates measured periodically were 0.0027, 0.0013, and $0.0006d^{-1}$ at 32.8, 41.1, and $52.7^{\circ}C$, respectively. The estimated remediation time was from 2 to 9 years, provided that final TPH concentration in soils was set to 870 mg/kg.

Treatment of hazardous chemicals by Nanoscale Iron powder (나노크기 철 분말을 이용한 난분해성 유해화합물질의 처리)

  • 최승희;장윤영;황경엽;김지형
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.85-93
    • /
    • 1999
  • The destruction of hazardous chemicals such as chlorinated organic compounds(COCs) and nitroaromatic compounds(NACs) by zero-valent iron powder is one of the latest innovative technologies. In this paper. the rapid dechlorination of chlorinated compounds as well as transformation of nitro functional group to amine functional group in the nitroaromatic compounds using synthesized zero-valent iron powder with nanoscale were studied in anaerobic batch system. Nanoscale iron, characterized by high surface area to mass ratios(31.4$\textrm{m}^2$/g) and high reactivity, could quickly reacts with compounds such as TCE, chloroform, nitrobenzene, nitrotoluene, dinitrobenzene and dinitrotoluene, at concentration of 10mg/L in aqueous solution at room temperature and pressure. In this study, the TCE was dechlorinated to ethane and chloroform to methane and nitro groups in NACs were transformed to amino groups in less than 30min. These results indicated that this chemical method using nanoscale iron powder has the high potential for the remediation of soils and groundwater contaminated with hazardous toxic chemicals including chlorinated organic compounds and nitro aromatic compounds.

  • PDF

Field application on bioelectrokinetic remediation of shooting range soil (생물학적으로 향상된 동전기 처리를 이용한 사격장 오염토양 정화 현장실증 연구)

  • Kwon, Young-Ho;Kim, Byeong-Kyu;Kim, Jeong-Rae;Kim, Jeong-Yeon;Oh, Hee-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1225-1230
    • /
    • 2010
  • 본 연구는 군부대 사격장의 중금속 오염토양에 대하여 생물학적 용출기술(BT)과 전기동력학적 기술(ET)의 통합공정의 적용성 평가 연구에 대한 것이다. 사격장 오염 토양의 경우 사격에 의해 탄두가 피탄지에 박히면서 오염토양 내에 잔존하여 탄두를 구성하는 주성분인 납과 구리 등에 의해 지속적인 오염원으로 작용하는 특징을 가진다. 따라서 사격장 토양오염정화를 위해서는 이 탄두를 물리적으로 선별하는 물리적 선별공정을 전처리공정으로 수행한 후 인공적으로 조성된 셀에 통합공정 적용성 평가를 위한 현장실증시험을 수행하였다. 생물학적 용출을 통해 토양내 잔류하는 중금속을 이온화시켜 이동성을 크게 한후 전기동력학적 기술을 통해 토양내에서 전해질로 이동시켜 최종적으로 전해질을 처리하는 시스템으로써 공정 모니터링결과 납과 구리 모두 주목할 만한 제거효율을 얻을수 있었다. 오염물질별 공정 적용성 평가결과 납의 경우 황산화박테리아에 의해 이온화가 되지만 황산화박테리아의 생장 부산물인 황산염이온(${SO_4}^{2-}$)과 반응하여 안정성이 큰 Anglesite($PbSO_4 $)를 형성하므로 전체적인 제거효율이 저하되는 것을 확인하였고 기타 미생물을 이용한 생물학적 용출기술 연구의 필요성을 확인하였다. 구리의 경우 황산염박테리아를 이용한 생물학적 용출공정 및 전기동력학적 처리공정의 통합공정을 통해 주목할 만한 제거효율을 얻을수 있었으며 통합공정의 효율성을 확인할 수 있었다. 본 연구를 통하여 미생물학적 용출기술과 전기동력학적 기술의 통합공정은 현장특이성(Site-specific) 확인후 적용가능성이 있음을 확인하였다.

  • PDF