• Title/Summary/Keyword: Contaminated Sediment

Search Result 220, Processing Time 0.029 seconds

Evaluation of Organic Sediments Qualities for the Urban Streams in the Busan City (부산시 하천퇴적물의 유기 오염도 평가)

  • Lee, Jun-Ki;Kim, Seog-Ku;Song, Jae-Hong;Lee, Tae-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.975-982
    • /
    • 2009
  • The purpose of this study is to offer informations about the current conditions and basic data of stream sediments in Busan city. So we first select 14 urban streams and collect sediment samples. Then, COD, proximate analysis, volatile solid, organic carbon content and elemental analysis were conducted to determine characteristics of the sediments. Results show that COD, volatile solid, Organic carbon content, T-N of sediment are determined in the range of 1.20~75.07 mg/g, 0.19~11.54%, 0.23~34.21% and 0.76~3.46%, respectively. Analysis data of sediments were compared with USEPA sediment quality standards and ontario sediment quality guidelines. As a result, when compared with COD, volatile solid and organic carbon content values, Bosucheon and Gudeokcheon are relatively heavily contaminated than the remainder sampling sites. But when compared with T-N values, all of sites were evaluated as seriously contaminated. Finally, for the determination of the correlations between sediment COD and moisture contents, ash contents, volatile solid, total organic carbon, total nitrogen and total carbon, linear model was fitted to the data using a least-squares algorithm. As a result, Linear model was well fitted to each data with good values of the correlation coefficient (r=0.9664~0.8501).

Application of Lime Stone, Sand, and Zeolite as Reactive Capping Materials for Marine Sediments Contaminated with Organic Matters and Nutrients (유기물 및 영양염류로 오염된 해양퇴적물 정화를 위한 석회석, 모래, 제올라이트의 반응성 피복 소재로서 적용성 평가)

  • Kang, Ku;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.470-477
    • /
    • 2017
  • In this study, the applicability of calcite, sand, and zeolite for the remediation of sediments contaminated with organics and nutrients were investigated. Sediments and seawater for water tank experiments were sampled from Pyeongtaek harbor, and 1 cm or 3 cm of calcite, sand, and zeolite were capped on the sampled sediments. pH, electric conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were monitored for 63 days. The sampled sediments were highly contaminated with organic matter and total nitrogen. DO in uncapped condition was exhausted within 10 days but DO in capping condition except 3 cm of zeolite capping was prolonged above 2 mg/L. Capping efficiency for interrupting COD release from sediments was in the following order: zeolite 1 cm > calcite 1 cm > calcite 3 cm > sand 3 cm ${\cong}$ zeolite 3 cm ${\cong}$ sand 1 cm. Zeolite was found to be effective for interrupting nitrogen release. T-P was not observed in both uncapped and capped sediment, i.e., all experimental conditions. It can be concluded that zeolite can be effectively used for the remediation of sediments highly contaminated with organic matter and nitrogen.

Use of comet assay as a bioassay in marine organisms exposed to genotoxicants (유전독성물질로 오염된 해양생물의 생물검정법으로서 comet assay 이용)

  • Kim Gi-Beum;An Joon-Gun;Kim Jae-Won
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.1071-1079
    • /
    • 2005
  • Using single cell gel electrophoresis, DNA single strand breaks were determined in various marine organisms. DNA damage on fish blood cells was detected to know whether there was a difference between Incheon, Pohang, Masan, and Tongyeong as a control site. Tongyeong showed the lowest DNA damage among the study areas. Mussels, transplanted to Masan Bay for one month, revealed high DNA damage at sites with high economical activity. In two weeks exposure of polychaete to Incheon sediments, higher DNA damage was detected in the sediment adjacent to Incheon harbor than open sea. These results suggested that the marine organism from the polluted area revealed a relatively high DNA damage. In addition, these areas might be contaminated with genotoxic compounds and comet assay was useful as a bioassay to detect DNA damage in marine organisms.

Investigation of trace element contamination in steam sediments in the Chungnam coal mine area using geostatistical approach (지구 통계학적 방법에 의한 충남 탄전 지역 하상퇴적물의 미량원소 오염조사)

  • 황춘길
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.63-72
    • /
    • 1999
  • In order to examine the contamination levels of trace elements in stream sediments in the Chungnam coal mine area, stream sediment and water samples were collected and analyzed for trace elements. The pH of stream water was neutral or weak-alkaline and the mobility of metal in stream sediments was supposed to be low. From the result of cluster analysis, non-polluted sampling stations can be distinguished from polluted sampling stations influenced by mining activities. The trace element concentrations in sediments from non-polluted zone were considered to be the natural backround concentrations of this area. The trace element concentrations in sediment samples from the mining area were higher than those from non-polluted area, and contaminated area of enriched trace element levels need to be properly managed. From the results of discriminant and regression analyses, concentrations of Cd, Cu, Pb AND zN and predicted values of Be, Mo, and Ni in Chungnam coal mine area were found to be lower than those in metal mining areas in Korea.

  • PDF

Application of Montmorillonite as Capping Material for Blocking of Phosphate Release from Contaminated Marine Sediment (해양오염퇴적물 내 인산염 용출차단을 위한 피복소재로서의 몬모릴로나이트 적용)

  • Kang, Ku;Kim, Young-Kee;Hong, Seong-Gu;Kim, Han-Joong;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.554-560
    • /
    • 2014
  • To investigate the applicability of montmorillonite to capping material for the remediation of contaminated marine sediment, adsorption characteristics of $PO{_4}{^{3-}}$ onto montmorillonite were studied in a batch system with respect to changes in contact time, initial concentration, pH, adsorbent dose amount, competing anions, adsorbent mixture, and seawater. Sorption equilibrium reached in 1 h at 50 mg/L but 3 h was required to reach sorption equilibrium at 300 mg/L. Freundlich model was more suitable to describe equilibrium sorption data than Langmuir model. The $PO{_4}{^{3-}}$ adsorption decreased as pH increased, due to the $PO{_4}{^{3-}}$ competition for favorable adsorption site with OH- at higher pH. The presence of anions such as nitrate, sulfate, and bicarbonate had no significant effect on the $PO{_4}{^{3-}}$ adsorption onto the montmorillonite. The use of the montmorillonite alone was more effective for the removal of the $PO{_4}{^{3-}}$ than mixing the montmorillonite with red mud and steel slag. The $PO{_4}{^{3-}}$ adsorption capacity of the montmorillonite was higher in seawater than deionized water, resulting from the presence of calcium ion in seawater. The water tank elution experiments showed that montmorillonite capping blocked well the elution of $PO{_4}{^{3-}}$, which was not measured up to 14 days. It was concluded that the montmirillonite has a potential capping material for the removal of the $PO{_4}{^{3-}}$ from the aqueous solutions.

Study on Geochemical Behavior of Heavy Metals by Indigenous Bacteria in Contaminated Soil and Sediment (국내 일부 오염 토양 및 퇴적물 내 토착 미생물에 의한 중금속의 지구화학적 거동 연구)

  • Song, Dae-Sung;Lee, Jong-Un;Ko, Il-Won;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.575-585
    • /
    • 2007
  • Microbial control of the geochemical behavior of heavy metals (Cd, Cu, Pb, and Zn) and As in contaminated subsurface soil and sediment was investigated through activation of indigenous bacteria with lactate under anaerobic condition for 25 days. The results indicated that dissolved Cd, Pb and Zn were microbially removed from solutions, which was likely due to the formation of metal sulfides after reduction of sulfate by indigenous sulfate-reducing bacteria. Soils from the Dukeum mine containing a large amount of sulfate resulted in complete removal of dissolved As after 25 days by microbial activities, while there were gradual increases in dissolved As concentration in soils from the Hwabuk mine and sediments from the Dongducheon industrial area which showed low $SO_4{^2-}$ concentrations. Addition of appropriate carbon sources and sulfate to contaminated geological media may lead to activation of indigenous bacteria and thus in situ stabilization of the heavy metals; however, potential of As release into solution after the amendment should be preferentially investigated.

Applications of Acid/Base Modified Activated Carbon for Stabilization of Sediment Contaminated with Organic Compounds (산/염기 개질활성탄을 이용한 유기오염물질 오염 퇴적토 안정화를 위한 적용성 연구)

  • Seunghyun Kang;Jaewoo Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.5-13
    • /
    • 2024
  • This paper investigates the stabilization feasibility of contaminated sediment contaminated with benzyl butyl phthalate (BBP) using acid/base-modified activated carbon. The efficiency of stabilizers was evaluated by analyzing the impact of the activated carbon on the decomposition and adsorption of the contaminant, along with the biological effects on earthworms. Additionally, the contaminant migration was monitored with the BBP concentration in pore water using low-density polyethylene. The research results indicated that the accumulated concentration of BBP was approximately 2% lower in the experimental group applying a 5% mixture ratio of modified activated carbon compared to the group applying a 10% mixture ratio. The leaching into water was reduced by over 18% in all experimental conditions after 7-day exposure period. Over 25% reduction was observed after 28-day exposure. The pore water concentrations were measured. After 7 days of exposure, the mechanically mixed experimental group exhibited a higher pore water stabilization rate compared to the biologically mixed group. Within the mechanically mixed group, the experimental group with 10% mixture of modified activated carbon showed a 1% higher stabilization rate than the group with 5% mixture. After 28 days of exposure, the biologically mixed experimental group demonstrated a higher pore water stabilization rate compared to the mechanically mixed group. Moreover, within the biologically mixed group, the experimental group with 10% mixture of modified activated carbon showed approximately 0.1% higher stabilization rate than the group with 5% mixture.

Numerical Study of Contaminant Transport Coupled with Large Strain Consolidation

  • Lee, Jang-Guen
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.45-52
    • /
    • 2008
  • Contaminant transport has been widely studied in rigid porous media, but there are some cases where a large volumetric stain occurs such as dewatering of dredged contaminated sediment, landfill liner, and in-situ capping. This paper presents a numerical investigation of contaminant transport coupled with large strain consolidation. Consolidation test was performed with contaminated sediments collected in Gary, Indiana, U.S. to obtain constitutive relationships, which are required for numerical simulations. Numerical results using CST2 show an excellent agreement with measured settlement and excess pore pressure. CST2 is then used to simulate contaminant transport during and after in-situ capping. Numerical simulations provide that transient advective flows caused by consolidation significantly increase the contaminant transport rate. In addition, the numerical simulations revealed that active capping with Reactive Core Mat (RCM) significantly decelerates consolidation-induced contaminant transport.

Distribution of Polycyclic Aromatic Hydrocarbon at Kongsfjorden in Spitsbergen, Svalbard Islands (북극 스발바드 군도 스피츠베르겐섬 콩스피요르드에서의 다환 방향족 탄화수소화합물의 분포 특성)

  • Kim, Gi Beom;Ha, Seong Yong;An, In Yeong
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.819-826
    • /
    • 2004
  • In order to elucidate the polycyclic aromatic hydrocarbon concentration and its origin in arctic area, four arctic brown algae (Laminaria saccharina, L. digita, Alaria esculenta, Desmarestia aculeata), one marine invertebrate (Echinoidea) and sediments were collected from Kongsfjorden in Spitsbergen from the late July to early August, 2003. In case of macroalgae, the young blade part above growth point and the old stipes and blades beneath growth point were separated and analyzed for polycyclic aromatic hydrocarbons (PAHs) in an attempt to check the mechanism of uptake in macroalgae to accumulate PAH. There was no difference in PAH concentrations between sampling sites (Stations B and C), species, and blades beneath and above growth point. PAH concentrations in all samples collected in this study were relatively higher than those reported in other areas of arctic. Especially, station C, which is known as an unpolluted area, showed 10 times higher PAH concentration (8,765 ng/g) in sediment than station A (694 ng/g) around harbor. In addition high PAH concentration, station C had very higher proportion of methylated PAH to parent PAH in sediment than station A. Source analysis using PAH isomer pair ratios as indicators showed that Kongsfjorden area seemed to be relatively contaminated with PAH derived from direct petroleum input.

Stress Expression by the Maternally Transferred Xenobiotic Pollutants in the Reproductive Outputs of the Pacific Oyster, Crassostrea gigas

  • Jo, Qtae;Choy, Eun-Jung;Lee, Su-Jeong;Cho, Yong-Chul;Lee, Chu;Kim, Yoon
    • Journal of Aquaculture
    • /
    • v.18 no.3
    • /
    • pp.200-206
    • /
    • 2005
  • We previously pointed out that the polluted sediment elutriate manifestly affected the early events of reproductive outputs in the Pacific oysters, Crassostrea gigas. A serial dilution of priority xenobiotic sediment elutriates determined by gas chromatography/mass spectrometry (GC/MS) were exposed to gametes of the oyster with different stress burdens to detail the maternal stress transfer to its reproductive outputs. There was an apparent critical concentration over which survival and morphogenesis were significantly affected with more profound damage in morphogenesis. The critical concentration which drives mortality and abnormal morphogenesis of the larvae corresponded to a dilution between 10 and 20% of our elutriate. The adverse effects of the early lives by the xenobiotic exposure over the critical concentration were magnified by the maternal stress from the exposed benzo(a)pyrene (BaP), one of the priority polyaromatic hydrocarbons (PAHs) during the maturation condition. These results indicate that maternal transfer of the xenobiotic compounds from oysters living in the contaminated location might represent a significant adverse effect to their larval population of wild seeds.