• Title/Summary/Keyword: Contaminated Sediment

Search Result 220, Processing Time 0.026 seconds

Environmental Impacts of Port and Industrial Development Along the Thi Vai River

  • Tran, Ha Phuong;Nguyen, Tho;Nguyen, Thanh Hung
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.435-443
    • /
    • 2009
  • Ba Ria - Vung Tau province in Southern Vietnam is one of the fastest economic growing areas in the country, characterized by the rapid port and industrial development along the Thi Vai river. The socio-economic situation of the area has generally been improved; however, its part of the local inhabitants has not gained benefits from the changes. 35 surface water samples and 25 sediment samples were analysed with the interpretation of the SPOT images for 1995 and 2005. The data showed that rapid port and industrial development have resulted in significant losses of mangroves and agriculture land. The surface water was seriously polluted, particularly in terms of organic materials and suspended solids. It contained high and increasing oil concentrations. The river sediment was saline and slightly alkaline. It was heavily reduced, organic-rich, and contaminated with oil and heavy metals (Cu, Pb, and Cr).

Monitoring and Management of Contaminated Suspended Solid (오염 부유물질의 관측과 관리)

  • Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.932-937
    • /
    • 2011
  • Main objectives of this paper were; firstly, to explain impacts of suspended solid in the water body on the relationship between water quantity and water quality; secondly, study on the inter-relationship between organic materials, nutrients, pathogens, and suspended solids considering eco-friendly water resources. Relationship between water quality and water quantity is not easy to understand as it includes physicochemical-biological reactions and diffuse pollutions. Especially, suspended solid makes water resource management difficult. Eroded soil in the upper land transported to the downstream by water flows carrying biological and physicochemical information and sedimented in the downstream. As sediment scoured under high flow condition and environmental change, suspended solid and sediment should be emphasized for understanding the inter-relationship between water quality and water quantity. Knowledge gaps between known monitored data and management of suspended solid were identified as well for future study.

Complete genome sequence of an indigo producing strain Yangia sp. TSBP01, isolated from oil-contaminated sediment (인디고 생산능이 있는 Yangia sp. TSBP01의 유전체 분석)

  • Kim, Hae-Seon;Cha, Sun Ho;Suk, Ho Young;Park, Nyun-Ho;Woo, Jung-Hee
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.293-294
    • /
    • 2018
  • Yangia sp. TSBP01, isolated from tidal flat sediment contaminated by the oil spill, is known to convert indole to indigo via an intermediate called indoxyl. Our analysis revealed that Yangia sp. TSBP01 contained the genome of 5,165,974 bp (G + C content: 66.5%) being composed of two chromosomes and five plasmids. This strain had genes encoding several oxygenases such as indole oxygenase directly involved in the conversion of indole to indoxyl.

Consolidation Settlement of Capped Sediment (I): Centrifuge Simulation by Modeling of Models Technique (캡이 설치된 퇴적층의 압밀 침하 (I) : 원심모형시험기를 이용한 모델링 방법)

  • Kim, Tae-Hyung;Hong, Won-Pyo;Moo-Young, Horace-K
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.33-38
    • /
    • 2003
  • Marine sediment capping is a technique where clean sand is placed over contaminated sediment to reduce the migration of contaminants to the environment. The design of in-situ caps placed over marine sediment must take into consideration the self-weight consolidation of the cap and the consolidation of the sediment as a result of adding the cap layer. Centrifuge tests were adopted to simulate the effects of consolidation settlement of capped marine sediment caused by the placement of a clean sand layer. The modeling of models technique was utilized to verify the correct modeling procedures used in this study. Two centrifuge tests were conducted with the same boundary conditions at different gravitational accelerations of 100 g and 50 g. There was good agreement between these tests. It can be concluded that the centrifuge experiment is able to model consolidation settlement of capped marine sediment.

A Study on Changes of the Benthic Environment and Microbial Community in Estuarine Polluted Sediments by Mixing Granulated Coal Ash (석탄회 조립물이 혼합된 하구 오염 퇴적물의 환경 및 미생물 구조 변화에 관한 연구)

  • Kim, Heontae;Woo, Hee-Eun;Kim, Jong-Oh;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.492-499
    • /
    • 2021
  • In this study, the benthic environmental and microbial community structure were investigated by mixing granulated coal ash(GCA) and contaminated estuary sediments. Estuary sediments and GCA were mixed in a ratio of 8:2 and allowed to interact for 1 month, then sediment environmental factors were investigated. The pH of the experimental sediment was mixed increased to 11. The concentration of DIP(Dissolved inorganic phosphorus) in the experimental case decreased by 30 % compared to the control case, and this should be due to formation of calcium phosphate through the chemical reaction of DIP and calcium which diluted from GCA. The high abundance of Gammaproteobacteria seen in the experimental sediment compare to the control can af ect the DIP reduction. The DIN(Dissolved inorganic nitrogen) concentration increased over two times in the experimental case than the control, and this should be due to the high pH condition and release of NH4+-N from the GCA. Microorganisms related to nitrogen circulation were not identified in both the control and experimental cases. It was confirmed that the GCA were effective in reducing the DIP concentration in contaminated estuary sediment, and that benthic microbial communities were shown to influenced the phosphorus circulation.

Heavy Metal Contamination in Surface Sediments from Masan and Jinhae Bay, Southeast Coast of Korea (남해 동부해역 임해공단 연안퇴적물의 중금속 오염: 마산만 및 진해만)

  • Cho, Yeong-Gil;Lee, Chang-Bok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.302-313
    • /
    • 2012
  • Concentrations of selected heavy metals (Al, Fe, Mn, Cr, Cu, Ni, Zn, Pb, As and Cd) in surface sediments from 96 sites in Masan and Jinhae Bay were studied in order to understand metal contamination. Results show that the surface sediments were mainly enriched by Cu (18-294 ppm), Zn (67-568 ppm), Pb (10-120 ppm) and Cd (0.2-3.5 ppm). The coastal zone of Masan Bay was significantly more contaminated than the non-coastal zone, and spatial distribution pattern suggested additional sources of heavy metal input in the coastal area. The enrichment ratio and geoaccumulation index ($I_{geo}$) have been calculated and the relative contamination levels assessed in the study area. The enrichment ratios of Cu, Zn, Pb and Cd in Masan Bay have been observed to be relatively high. $I_{geo}$ results reveal that the study area is not contaminated with respect to Fe, Mn, Cr and Ni; moderately to strongly contaminated with Cu, Zn and Pb; and strongly to strong contaminated with Cd. The high contents of Cu, Zn, Pb and Cd in the study area result from anthropogenic activities in the catchment area. Based on the eight different sediment quality guideline values from USA (ERL, ERM), Canada (TEL, PEL), Australia/New Zealand (ISQG-high, ISQG-low) and Hong Kong (ISQV-low, ISQV-high), sediment quality of Masan and Jinhae Bay was also assessed and characterized.

Natural Zeolite and Sand Capping Treatment for Interrupting the Release of Cd, Cr, Cu, and Zn from Marine Contaminated Sediment and Stabilizing the Heavy Metals (오염된 해양퇴적물 내 Cd, Cr, Cu, Zn의 용출차단과 안정화를 위한 천연 제올라이트와 모래 피복의 적용)

  • Kang, Ku;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • We investigated the effectiveness of natural zeolite (NZ) and sand (SD) as a capping material to block the release of heavy metals (Cd, Cr, Cu, and Zn) from heavily contaminated marine sediments and stabilize these heavy metals in the sediments. The efficiency of NZ and SD for blocking trace metals was evaluated in a flat flow tank attached with an impeller to generate wave. 0, 10, 30, and 50 mm depth of NZ or SD were capped on the contaminated marine sediments and the metal concentration in seawater was monitored. After completion of flow tank experiments, sequential extractions of the metals in the sediment below the capping material were performed. The difference of pH, EC, and DO concentration between uncapped and capped condition was not significant. The release of cations including Cd, Cu, and Zn were effectively blocked by NZ and SD capping but the interruption of Cr release was observed only in 50 mm depth of SD capped condition. However, the stabilization of Cr in 50 mm depth of SD capped condition was not achieved when compared to uncapped condition. NZ and SD capping were effective for stabilizing Cd, Cu, and Zn in marine sediments. It is concluded that the use of NZ with SD as a capping material is recommended for blocking Cd, Cr, Cu, and Zn release and stabilizing them in contaminated marine sediments.

Ecological Recovery of Contaminated Dredged Materials in Masan Bay, Korea (마산만 오염 준설토사의 생태회복)

  • Lee, Chan-Won;Jeon, Hong-Pyo;Ha, Kyung-Ae
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • A large amount of $2.1{\times}10^6m^3$ of polluted sediment was dredged from the Masan Bay and deposited in Gapo confined area, Masan, Korea. The six representative sediments were obtained and analyzed for issue components. The data was discussed with the species of benthos and their distribution. It was judged that toxicological effects of sediment analyzed ranged from ERL to ERM with copper and zinc, and ERL with cadmium, chrome, lead and nickel by the Adverse Biological Effects. The dredging index (DI) of sediments stabilized for 10 years since dumping the confined site was calculated and compared with the DI values of dredged sediment itself. DI values decreased from 0.67 to $0.07{\sim}0.18$, which reflects DI value less than 0.2 is good for benthos in the sediment by the natural recovery of dredged materials. The ecological recovery was confirmed in this confined area as a habitat of benthic organisms.