• Title/Summary/Keyword: Contaminated Sediment

Search Result 220, Processing Time 0.024 seconds

A Study of Soil and Water Pollutions in Kyungsan Province (경산지역 토양 및 수질오염에 관한 연구)

  • 김용태;이부용;김동석;양소영;이동훈;박병윤
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.713-720
    • /
    • 2002
  • In order to provide the basic information on the environmental pollution of Kyungsan province, the contents of Pb, Cd, Cr, Cu, Mn and Zn in soil, stream water, aquatic sediment and groundwater were investigated, and also the values of pH, COD, $KMnO_4-C$,\;NH_3-N,\;NO_2-N,\;NO_3-N$ and $Cl^-$ of stream water and groundwater were determined. The results were as follows. The values of COD, $NH_3-N,\;NO_2-N$ and $NO_3-N$ of the stream waters were very low. The contents of Pb, Cd, Cr, Cu and Zn in the stream waters were respectively at range of $0.014~0.063 mg/{\ell},\;0.004~0.007 mg/{\ell$\mid$, 0~0.045 mg/{\ell},\;0~0.008 mg/{\ell}$\;and\;$0.001~0.175 mg/{\ell}$, and these values were much lower than those of contaminated stream water in Korea. The contents of Cd, Cr, Cu and Zn in the soils were respectively at range of 0.12~O.71 ppm, 0.88~2.65 ppm, 2.86~22.33 ppm and 3.89~26.39 ppm, and these values were much lower than those of ordinary polluted areas in Korea. The contents of Cd, Cr, Cu, As, Zn and Mn in the aquatic sediments were respectively at range of 3.05~3.81 ppm, 14.6~70.6 ppm, 13.74~61.59 ppm, 76.8~465.5 ppm, 12.56~190.83 ppm and 333.3~l188.3 ppm. The values of pH, $KMnO_4-C,\;NH_3-N$, and $NO_3-N$ of the groundwaters were respectively at range of 7.6~8.4, $0~3.95{\ell}$, 0.05~0.15 mg/{\ell}$ and 0.05~0.42 $mg/{\ell}$. The contents of Pb, Cd and Cr in the groundwaters were respectively at range of 0.015~0.061 $mg/{\ell}$, 0.O06~0.009 $mg/{\ell}$ and 0.005~0.045 $mg/{\ell}$.

Concentration of Polybrominated Diphenyl Ethers and Their Composition in Octopus minor Collected from Seosan Intertidal Zone (낙지(Octopus minor)에서의 브롬계화합물(Polybrominated diphenyl ethers, PBDEs)의 잔류농도와 조성특성)

  • Lee, Hyo-Jin;Kim, Gi-Beum;Stapleton, Heather
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.68-74
    • /
    • 2010
  • Octopus(Octopus minor), benthic cephalopod, were collected from intertidal zone in Seosan, Choongnam and analyzed for polybrominted diphenyl ethers(PBDEs). PBDEs concentrations ranged from 29 to 109 ng/g lipid wt(mean; 54 ng/g) in mantle and from 12 to 89 ng/g lipid wt(mean; 48 ng/g) in internal organ. PBDEs concentrations in octopus internal organ were lower about two times than that in common squid collected in Yellow Sea, indicating Seosan is relatively less contaminated with PBDEs. Major congener was BDE 206, occupying 72% and 49% of total PBDE concentration in mantle and in internal organ, respectively, which is very different from PBDE composition in common squid with major congeners of BDE 47 and 99. From PBDE composition, octopus seemed to concentrate higher brominated BDE rather than lower brominated BDE. This PBDE composition in octopus may be affected by sediment with extremely high contribution of deca-BDE to total PBDE concentration.

Contamination Level and Behavior of Heavy Metals in Stream Sediments Within the Watershed of Juam Reservoir (주암댐 집수유역 내 하상퇴적물의 중금속 오염현황 및 거동 특성)

  • 염승준;이평구;강민주;신성천;유연희
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.311-324
    • /
    • 2004
  • We investigated the contamination and behavior of heavy metals in stream sediments within the watershed of Juam Reservoir. Many abandoned mines within the reservoir can act as a potential contaminant source for water quality. Heavy metal concentrations (Cr, Cu, Ni, Pb and Zn) in stream sediments from watershed are very low, indicating that content of heavy metals in the sediments probably do not affect the water quality in Juam Reservoir. However Pb concentration in the stream sediments increases downward streams, suggesting the possible diffusion of Pb contamination. According to the leaching ratio for stream sediments at a strong acidic condition in the abandoned mine areas, the relative mobility for metals decreases in the order of Pb>Zn=Cu>Ni>Cr, indicating that Pb can have a bad effect upon the water quality in Jum Reservoir. Moreover, if contaminated sediment is placed in the bottom of reservoir (i.e., reducing condition), the relative mobility of Pb is the highest, indicating that Pb in the bottom sediments can be leached to water at interface between water and sediment with changing in physicochemical conditions.

Contamination Assessment of Surface Sediments in Urban Rivers, Busan (부산지역 도시하천 표층 퇴적물 오염도 평가에 관한 연구)

  • Kwag, Jin-Suk;Son, Jung-Won;Kim, Chu-In;Song, Bok-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.4
    • /
    • pp.296-305
    • /
    • 2021
  • This work investigated heavy metal pollution in surface sediments of rivers in Busan, Korea. Surface sediments were analyzed in order to conduct contamination assessment of organic matter, nutrients, and heavy metal concentrations. Contamination assessment of heavy metals was conducted using geoaccumulation index (Igeo), pollution load index (PLI), and potential ecological risk index (RI). Accumulation of organic matter and nutrients were affected by water discharged from sewage treatment plant. The concentrations of organic matter and nutrients were found to be greater in points which were close to the sewage treatment plant more than points furthest. The concentrations of Pb, Zn, Cu, Cd, Hg, As, Cr, and Ni were found to be greater in surface sediment more than in the background. The mean concentrations of heavy metals were in the order of Zn (323.5 mg/kg) > Cu (70.5 mg/kg) > Pb (39.8 mg/kg) > Cr (33.4 mg/kg) > Ni (13.5 mg/kg) > As (9.4 mg/kg) > Cd (0.84 mg/kg) > Hg (0.092 mg/kg). The result of geoaccumulation indices indicated that Hg > Cr > Cu > Ni > Zn > As > Pb > Cd were found in order of severe contamination by heavy metals. From PLI and RI analysis, it was evident that the Suyeonggang 2 was the most contaminated river.

Selenite Reduction to Elemental Selenium by Citrobacter Strain SE4-1 Isolated from a Stream Sediment (하천 퇴적토에서 분리한 Citrobacter strain SE4-1에 의한 아셀렌산염의 원소상 셀레늄으로의 환원)

  • Lee, Ji-Hoon;Cho, Ahyeon;Lee, Hyeri
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.146-149
    • /
    • 2018
  • BACKGROUND: Selenium is an essential element for all life forms but can be toxic above certain narrow levels. Prevalent forms of selenium in oxic environment are selenium oxyanions such as selenite and selenate, which may be contaminants in soils and water bodies. Bacterial reduction of more mobile selenium species (selenite or selenate) to less mobile elemental selenium may suggest a benign solution for alleviating toxicity and bioavailability of the selenium species. METHODS AND RESULTS: A facultative anaerobic bacterium, Citrobacter strain SE4-1 was isolated from the contaminated stream sediments and found to effectively reduce selenite to elemental selenium. Aqueous phase of selenite was analyzed by inductively couple plasma spectroscopy and the precipitated sphere-shaped elemental selenium was observed by transmission electron microscopy. CONCLUSION: The bacterial strain SE4-1 isolated in this study suggests a potential role in biogeochemical cycle of selenium by the selenite reduction in the stream environment, and potentials for biotechnological applications to reduceselenium concentrations in selenium-contaminated systems such as wastewater, soil, and groundwater.

Relationship between the Organic Content, Heavy Metal Concentration and Anaerobic Respiration Bacteria in the Sediments of Shiwha-ho (시화호 저니(Sediment)에서의 유기물 및 중금속 농도와 혐기성호흡세균과의 상관관계)

  • 현문식;장인섭;박형수;김병홍;김형주;이홍금;권개경
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.252-259
    • /
    • 1999
  • Anoxic sediments collected from Shiwha-ho area were used to find the relationship between the heavy-metal, organic content and anaerobic respiration bacteria by most probable number (MPN) method. Analysis of the sediments showed that COD content was higher in the sediments collected from Ansan-cheon and Shiwha-ho than those collected from sea area nearby. Particularly noticeable was the fact that heavy metal concentration was much higher in the sediments of Shiwha-ho area contaminated by heavy-metal, although they were rich in electron donor and electron acceptor for Fe(III)-reducing bacteria using lactate as an electron donor was in the range of 1.1$\times$106-4.6$\times$107MPNs/ml in the sediments collected from the sea-side of the lake, which were lower in heavy-methal concentration and higher in Fe-Mn content than those from other region. The number of Fe(III)-reducing bacteria using acetate as an electron donor was in the rang eof 4.3$\times$102-8.1$\times$105MPNs/ml in the same sediments. Chromate-reducing bacteria were more populated(4.6$\times$104-8.1$\times$105MPNs/ml) in the sediments contaminated by heavy metals. The number of sulfate-reducing bacteria wee counted in the sediments collected from the more contaminate inner-side than those from the sea-side of the lake.

  • PDF

Soil Loss Reduction and Stabilization of Arsenic Contaminated Soil in Sloped Farmland using CMDS (Coal Mine Drainage Sludge) under Rainfall Simulation (광산지역 비소오염 경사 농경지 토양의 안정화 및 유실 저감을 위한 석탄광산배수슬러지의 적용성 평가)

  • Koh, Il-Ha;Kwon, Yo Seb;Jeong, Mun-Ho;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.18-26
    • /
    • 2021
  • Soil aggregation begins with flocculation of clay particles triggered by interfacial reactions of polyvalent cation such as Ca2+ and Fe3+, and they are also known as important elements to control the mobility of arsenic in soil environment. The objective of this study was to investigate the feasibility of CMDS (coal mine drainage sludge) for soil loss reduction and stabilization of arsenic-contaminated soil in a 37% sloped farmland under rainfall simulation. The amount of soil loss decreased by 43% when CMDS was applied, and this result was not significantly different from the case of limestone application, which yielded 46% decrease of soil loss. However, the relative amount of dispersed clay particles in the sediment CMDS-applied soil was 10% lower than that of limestone-applied soil, suggesting CMDS is more effective than limestone in inducing soil aggregation. The concentrations of bioavailable arsenic in CMDS amended soil decreased by 46%~78%, which was lower than the amount in limestone amended soil. Therefore, CMDS can be used as an effective amendment material to reduce soil loss and stabilize arsenic in sloped farmland areas.

The Spatial and Vertical Variations of Metal Pollution in Sediments after Tidal Power Plant Operation in Shihwa Lake (시화호 조력발전소 가동으로 인한 퇴적물 내 중금속 오염 특성 변화)

  • LEE, JIHYUN;JEONG, HYERYEONG;CHOI, JIN YOUNG;RA, KONGTAE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.535-547
    • /
    • 2019
  • In this study, the heavy metal analysis in sediments (surface sediments, sediments cores and settling particles) from Shihwa Lake has been carried out to evaluate the changes of metal pollution levels in sediments after the operation of Tidal Power Plant (TPP). The average concentrations of metals in surface sediments sampled in 2015 were 8% (Cd)~31% (Zn, Hg) lower than in 2009 before TPP operation. Results of calculating the pollution load index (PLI) with 8 metals, the PLI value in 2015 showed a 18% decrease compared to 2009. However, Cu, Zn, Pb concentrations of surface sediments in 2015 at the upper region around industrial complex still exceeded the TEL (threshold effect level) values for sediment quality guideline in Korea. After the operation of TPP, the metal contaminated depths were increasing from 15 cm to 30 cm at S6 site and from 8 cm to 20 cm at S7 site, respectively. Our data showed that the mean concentration of heavy metals in core samples decreased but the contaminated depth increased. The average of the total sedimentation flux for particulate matter increased by 3.2 times from 32.5 g/㎡/d in 2009 to 103.5 g/㎡/d in 2015. This showed that the bottom sediments were resuspended by the operation of TPP, resulting in an increase of particulate matter in the water column. These results suggest that the sediments contaminated with heavy metals seem to be resuspended and relocated due to the water current caused by the operation of TPP. Cr, Cu, Zn, Pb and Cd were highly exceeding the TEL values in the upstream region and accumulated more than 40 cm of sediment depth, indicating that heavy metal contamination through industrial activity were still a serious environmental problem of Shihwa Lake. Although the metal pollution of Shihwa Lake has been slightly reduced, the contaminated sediments with heavy metals inside of Shihwa Lake might be discharged to outer sea after the resuspension by TPP operation. It is necessary for the advanced scientific approach and political decision to drastically reduce the heavy metal pollution of the study region.

Degradation of TPHs, TCE, PCE, and BTEX Compounds for NAPLs Contaminated Marine Sediments Using In-Situ Air Sparging Combined with Vapor Extraction (증기추출법과 결합된 공기주입법을 이용한 비수용성액체 해양퇴적물의 TPHs, TCE, PCE 및 BTEX 정화)

  • Lee, Jun-Ho;Han, Sun-Hyang;Park, Kap-Song
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.425-444
    • /
    • 2013
  • This study was carried out in order to determine the remediation of total petroleum hydrocarbons (TPHs), trichloroethylene (TCE), perchloroethylene (PCE), benzene, toluene, ethylbenzene and xylenes (BTEX) compounds for non-aqueous phase liquids (NAPLs) using in-situ air sparging (IAS) / vapor extraction (VE) with the marine sediments of Mandol, Hajeon, Sangam and Busan, South Korea. Surface sediment of Mandol area had sand characteristics (average particle size, 1.789 ${\Phi}$), and sandy silt characteristics (average particle size, 5.503 ${\Phi}$), respectively. Sangam surface sediment had silt characteristics (average particle size, 5.835 ${\Phi}$). Sediment characteristics before experiment in the Busan area showed clay characteristics (average particle size, 8.528 ${\Phi}$). TPHs level in the B1 column of Mandol, Hajeon, Sangam, and Busan sediments were 2,459, 6,712, 4,348, and 14,279 ppm. B2 (3 L/min) to B5 (5 L/min) columns reduced 99.5% to 100.0% of TCE and 93.2% to 100.0% of PCE. Removal rates of TCE, PCE, and BTEX are closely correlated (0.90-0.99) with particle sizes and organic carbon concentrations. However, TPHs (0.76) and benzene (0.71) showed the poorer but moderate correlations with the same parameters.

Characteristics of Heavy Metal Pollution in Contaminated Roadside Sediments in Jeonju City, Korea (전주시 도로변 퇴적물의 중금속 오염 특성)

  • Cho, Ktu-Seong
    • Journal of the Korean earth science society
    • /
    • v.24 no.8
    • /
    • pp.711-720
    • /
    • 2003
  • To study characteristics of the heavy metal pollution, sediment samples were collected at 67 sites on the roadside of Jeonju city during summer and winter, 2002. The total concentration of metals including Cd, Co, Cr, Cu, Ni, Pb, Zn, and Mn in the sediment samples were determined. The results indicate that the roadside sediments in Jeonju city have lower (1/2 to 1/7 times) concentrations of Zn, Cu, Pb and Cd than the metal concentrations previously reported for roadside soil, dust and sewage sludges in Seoul. However, the metal concentrations are higher than environmental quality criteria in soil suggested from several countries, and Zn, Cu, Pb and Cd contents are usually 2-7 times higher than the world average contents of the metals in natural soil. Although pollution index and concentrations of Cr, Ni, Pb and Zn in the roadside sediments at industrial area were usually higher than those of downtown and residential area, the metal having small vehicle- and steel-related industries had high concentrations of metals. The results of chemical partitioning analysis showed that Pb, Zn and Mn are mainly associated with carbonate/adsorbed and Fe-Mn oxide phases but that Cu is largely associated with the organic and sulfide fractions. It thus indicates that both large and small (vehicle- and steel-related) industries are main sources of heavy metal contamination. Due to high solubility of the carbonate phases by natural leaching episodes, the carbonate/adsorbed Cd, Co, Ni, Pb, Zn and Mn in the roadside sediments may serve as a potential source of contamination.