• 제목/요약/키워드: Containment integrity

검색결과 68건 처리시간 0.026초

Investigation of a Hydrogen Mitigation System During Large Break Loss-Of-Coolant Accident for a Two-Loop Pressurized Water Reactor

  • Dehjourian, Mehdi;Sayareh, Reza;Rahgoshay, Mohammad;Jahanfarnia, Gholamreza;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1174-1183
    • /
    • 2016
  • Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.

IMPROVEMENT OF CUPID CODE FOR SIMULATING FILMWISE STEAM CONDENSATION IN THE PRESENCE OF NONCONDENSABLE GASES

  • LEE, JEHEE;PARK, GOON-CHERL;CHO, HYOUNG KYU
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.567-578
    • /
    • 2015
  • In a nuclear reactor containment, wall condensation forms with noncondensable gases and their accumulation near the condensate film leads to a significant reduction in heat transfer. In the framework of nuclear reactor safety, the film condensation in the presence of noncondensable gases is of high relevance with regards to safety concerns as it is closely associated with peak pressure predictions for containment integrity and the performance of components installed for containment cooling in accident conditions. In the present study, CUPID code, which has been developed by KAERI for the analysis of transient two-phase flows in nuclear reactor components, is improved for simulating film condensation in the presence of noncondensable gases. In order to evaluate the condensate heat transfer accurately in a large system using the two-fluid model, a mass diffusion model, a liquid film model, and a wall film condensation model were implemented into CUPID. For the condensation simulation, a wall function approach with a heat/mass transfer analogy was applied in order to save computational time without considerable refinement for the boundary layer. This paper presents the implemented wall film condensation model, and then introduces the simulation result using the improved CUPID for a conceptual condensation problem in a large system.

SEVERE ACCIDENT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT AND IMPROVEMENTS SUGGESTED

  • Song, Jin Ho;Kim, Tae Woon
    • Nuclear Engineering and Technology
    • /
    • 제46권2호
    • /
    • pp.207-216
    • /
    • 2014
  • This paper revisits the Fukushima accident to draw lessons in the aspect of nuclear safety considering the fact that the Fukushima accident resulted in core damage for three nuclear power plants simultaneously and that there is a high possibility of a failure of the integrity of reactor vessel and primary containment vessel. A brief review on the accident progression at Fukushima nuclear power plants is discussed to highlight the nature and characteristic of the event. As the severe accident management measures at the Fukushima Daiich nuclear power plants seem to be not fully effective, limitations of current severe accident management strategy are discussed to identify the areas for the potential improvements including core cooling strategy, containment venting, hydrogen control, depressurization of primary system, and proper indication of event progression. The gap between the Fukushima accident event progression and current understanding of severe accident phenomenology including the core damage, reactor vessel failure, containment failure, and hydrogen explosion are discussed. Adequacy of current safety goals are also discussed in view of the socio-economic impact of the Fukushima accident. As a conclusion, it is suggested that an investigation on a coherent integrated safety principle for the severe accident and development of innovative mitigation features is necessary for robust and resilient nuclear power system.

GOTHIC-3D APPLICABILITY TO HYDROGEN COMBUSTION ANALYSIS

  • LEE JUNG-JAE;LEE JIN-YONG;PARK GOON-CHERL;LEE BYUNG-CHUL;YOO HOJONG;KIM HYEONG-TAEK;OH SEUNG-JONG
    • Nuclear Engineering and Technology
    • /
    • 제37권3호
    • /
    • pp.265-272
    • /
    • 2005
  • Severe accidents in nuclear power plants can cause hydrogen-generating chemical reactions, which create the danger of hydrogen combustion and thus threaten containment integrity. For containment analyses, a three-dimensional mechanistic code, GOTHIC-3D has been applied near source compartments to predict whether or not highly reactive gas mixtures can form during an accident with the hydrogen mitigation system working. To assess the code applicability to hydrogen combustion analysis, this paper presents the numerical calculation results of GOTHIC-3D for various hydrogen combustion experiments, including FLAME, LSVCTF, and SNU-2D. In this study, a technical base for the modeling oflarge- and small-scale facilities was introduced through sensitivity studies on cell size and bum modeling parameters. Use of a turbulent bum option of the eddy dissipation concept enabled scale-free applications. Lowering the bum parameter values for the flame thickness and the bum temperature limit resulted in a larger flame velocity. When applied to hydrogen combustion analysis, this study revealed that the GOTHIC-3D code is generally able to predict the combustion phenomena with its default bum modeling parameters for large-scale facilities. However, the code needs further modifications of its bum modeling parameters to be applied to either small-scale facilities or extremely fast transients.

Ice Collision Analyses for Membrane Tank Type LNG Carrier

  • Suh, Yong-Suk;Ito, Hisashi;Chun, Sang-Eon;Han, Sang-Min;Choi, Jae-Yeon;Urm, Hang-Sub
    • Journal of Ship and Ocean Technology
    • /
    • 제12권1호
    • /
    • pp.35-44
    • /
    • 2008
  • As arctic energy resource is attracting public attention, arctic shipping market will also be growing in large as expected to increase in LNG trade from Arctic area to the western countries by shipping. During the voyages through such routes, collision with icebergs may be possible. In the present report, ice collision analyses are carried out from a practical point of view to verify the safety of hull structural strength of LNG carriers equipped with GTT $MKIII^{TM}$ membrane type cargo containment system. From the results of collision analyses and the operation-friendly design concept of no-repairing of cargo containment system, a safe operating envelope against ice collision is proposed for LNG carriers of membrane type cargo containment system. Based on the currently proposed safety criteria, it is concluded that LNG carriers with membrane tank type can operate safely with regard to the integrity of CCS in regions where collision between LNG carrier and iceberg is expected.

라이너 플레이트 및 콘크리트 공동을 고려한 원전 격납건물 벽체의 탄성파 전파 해석 (Elastic Wave Propagation in Nuclear Power Plant Containment Building Walls Considering Liner Plate and Concrete Cavity)

  • 김은영;김보영;강준원;이홍표
    • 한국전산구조공학회논문집
    • /
    • 제34권3호
    • /
    • pp.167-174
    • /
    • 2021
  • 최근 국내 원자력발전소의 격납건물 벽체와 Containment Liner Plate(CLP) 사이에서 다양한 크기의 공극이 발견됨에 따라 원전 격납건물의 보수를 위해 내부 공극의 분포와 크기를 정밀하게 평가할 수 있는 진단기법의 개발이 요구되고 있다. 이에 따라 이 연구에서는 격납건물 벽체에서의 탄성파 전파거동을 계산하는 2차원 유한요소해석 기법을 제시한다. 격납건물 벽체를 기반으로 해석영역을 구성하고 경계면에서의 반사파를 제거하기 위해 수치적 파동흡수 경계층인 perfectly matched layer를 도입하였다. Galerkin 기반 혼합유한요소법을 이용해 2차원 유한영역에서 탄성파 파동방정식의 해를 구하여 충격하중에 대한 격납건물 벽체의 변위와 응력을 계산하였다. 제시한 수치적 기법을 이용하여 격납건물 콘크리트 벽체의 CLP 부착 유무와 공동의 위치 및 크기 변화에 따른 탄성파 전파거동을 살펴보았다. 이 연구의 결과는 원전 격납건물 내부의 공동을 진단하는 탄성파 전체파형 역해석 기법 개발에 활용될 수 있다.

Development of Strength Evaluation Methodology for Independent IMO TYPE C Tank with LH2 Carriers

  • Beom-Il, Kim ;Kyoung-Tae Kim;Shafiqul Islam
    • 한국해양공학회지
    • /
    • 제38권3호
    • /
    • pp.87-102
    • /
    • 2024
  • Given the inadequate regulatory framework for liquefied hydrogen gas storage tanks on ships and the limitations of the IGC Code, designed for liquefied natural gas, this study introduces a critical assessment procedure to ensure the safety and suitability of such tank designs. This study performed a heat transfer analysis for boil-off gas (BOG) calculations and established separate design load cases to evaluate the yielding and buckling strength. In addition, the study assessed methodologies for both high-cycle and low-cycle fatigue assessments, complemented by comprehensive structural integrity evaluations using finite element analysis. A comprehensive approach was developed to assess the structural integrity of Type C tanks by conducting crack propagation analysis and comparing these results with the IGC Code criteria. The practicality and efficacy of these methods were validated through their application on a 23K-class liquefied hydrogen carrier at the concept design stage. These findings may have important implications for enhancing safety standards and regulatory policies.

CANDU 압력관에 대한 건전성 평가시스템 개발;예리한 결함 및 둔한 노치에의 적용 (Development of CANDU Pressure Tube Integrity Evaluation System;Its Application to Sharp Flaw and Blunt Notch)

  • 곽상록;이준성;김영진;박윤원
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.206-214
    • /
    • 2000
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and it's containment vessel. If a flaw is found during the periodic inspection from the pressure tube s. the integrity evaluation must be carried out. and the safety requirements must be satisfied for continued service. In order to complete the integrity evaluation, complicated and iterative calculation procedures are required. Besides, a lot of data and knowledge for the evaluation are required for the entire: integrity evaluation process. For this reason. an integrity evaluation system, which provides efficient of evaluation with the help of attached databases, was developed. The developed system was built on the basis of ASME Sec. XI and FFSG(Fitness For Service Guidelines for zirconium alloy pressure tubes in operating CANDU reactors) issued by the AECL, and covers the delayed hydride cracking(DHC). This system does not only provide various databases including the 3-D finite element analysis results on pressure tubes, inspection data and design specifications but also is compatible with other commercial database software. In order to verify the developed system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.

An Experimental Study on the Transient Interaction Between High Temperature Thermite Melt and Concrete

  • Nho, Ki-Man;Kim, Jong-Hwan;Kim, Sang-Baik;Shin, Ki-Yeol;Mo Chung
    • Nuclear Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.336-347
    • /
    • 1997
  • During postulated severe accidents in Light water Reactors, molten corium which was ejected from the reactor vessel bottom, may erode the concrete basemat of the containment and there by threaten the containment integrity. This study experimentally examines the molten core-concrete interaction (MCC) using 20kg of thermite melt (Fe + $Al_2$O$_3$) and the concrete, used in Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3 & 4) in Korea. The measured data are the downward heat fluxes, concrete erosion rate, gases and particle generation rates during MCCI. Transient results ore compared with those of TURCIT experiment conducted by SNL in USA. The peak downward heat flux to the concrete was measured to be about 2.1㎿/$m^2$. The initial concrete erosion rate was 175cm per hour, decreasing to 30cm per hour. It was shown from the post-test that the erosion was progressed downward up to 18mm in the concrete slug.

  • PDF

Development of an Entrainment Model for the Steam Line Break Mass and Energy Release Analysis

  • Park, Young-Chan;Kim, Yoo
    • 에너지공학
    • /
    • 제12권2호
    • /
    • pp.101-108
    • /
    • 2003
  • The purpose of this study is to develop an entrainment model of the Pressurized Water Reactor (PWR) U-tube Steam Generator (SG) for Main Steam Line Break (MSLB) analyses. Generally, the temperature of the inside containment vessel at MSLB is decreased by introducing the liquid entrainment effect. This effect makes a profit on the aspect of integrity evaluation for Equipment Environmental Qualification (EEQ) in the containment. However, the target plant, Kori unit 1 does not have the entrainment data. Therefore, this study has been performed. RETRAN-3D and LOFTRAN computer programs are used for the model development. There are several parameters that are used for the initial benchmark, such as Combustion Engineerings (CE) experimental data and the RETRAN-3D model which describes the test leg. A sensitivity study is then performed with this model in which the model parameters are varied until the calculated results provide reasonable agreement with the measured results for the entire test set. Finally, a multiplication factor has been obtained from the 95/95 values of the calculated (best-estimate) quality data relative to the measured quality data. With this new methodology, an additional temperature margin of about 40$^{\circ}C$ can be obtained. So, the new methodology is found to have an explicit advantage to EQ analyses.