• Title/Summary/Keyword: Containment Floor

Search Result 19, Processing Time 0.024 seconds

Development of Stable Walking Robot for Accident Condition Monitoring on Uneven Floors in a Nuclear Power Plant

  • Kim, Jong Seog;Jang, You Hyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.632-637
    • /
    • 2017
  • Even though the potential for an accident in nuclear power plants is very low, multiple emergency plans are necessary because the impact of such an accident to the public is enormous. One of these emergency plans involves a robotic system for investigating accidents under conditions of high radiation and contaminated air. To develop a robot suitable for operation in a nuclear power plant, we focused on eliminating the three major obstacles that challenge robots in such conditions: the disconnection of radio communication, falling on uneven floors, and loss of localization. To solve the radio problem, a Wi-Fi extender was used in radio shadow areas. To reinforce the walking, we developed two- and four-leg convertible walking, a floor adaptive foot, a roly-poly defensive falling design, and automatic standing recovery after falling methods were developed. To allow the robot to determine its location in the containment building, a bar code landmark reading method was chosen. When a severe accident occurs, this robot will be useful for accident condition monitoring. We also anticipate the robot can serve as a workman aid in a high radiation area during normal operations.

Evaluation of MCCI Behaviors in the Calandria Vault of CANDU-6 Plants Using CORQUENCH Code (CORQUENCH 코드를 활용한 중수로 calandria vault에서의 MCCI 거동 분석)

  • Seon Oh YU
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.90-100
    • /
    • 2021
  • Molten corium-concrete interaction (MCCI) is one of the most important phenomena that can lead to the potential hazard of late containment failure due to basemat penetration during a severe accident. In this study, MCCI analytical models of the CORQUENCH code were prepared through verification calculations of several experiments, which had been performed using concrete types similar to those of the calandria vault floor in CANDU-6 plants. The behaviors of thermal-hydraulic variables related to MCCI phenomena were analyzed under the conditions of dry floor and water flooding during the severe accident stemming from a hypothetic station blackout. Uncertainty analyses on the ablation depth were also carried out. It was estimated that the concrete ablation was not interrupted due to the continuous MCCI process under the dry condition but was terminated within 24 hours under the water flooding condition. It was confirmed that the water flooding as a mitigating action was effective to achieve the quenching and thermal stabilization of the melt discharged from the calandria vessel, showing that the present models are capable of reasonably simulating MCCI phenomena in CANDU-6 plants. This study is expected to provide the technical bases to the accident management strategy during the late-phase severe accidents.

Generation of Floor Response Spectra including Equipment-Structure Interaction in Frequency Domain (진동수 영역에서 기기-구조물 상호작용을 고려한 층응답스펙트럼의 작성)

  • Choi, Dong-Ho;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.13-19
    • /
    • 2005
  • Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plants are usually generated without considering dynamic interaction between main structure and subsystem. This study describes the analytic method in which equipment response spectra can be obtained through dynamic analysis considering equipment-structure Interaction(ESI). In this method, dynamic response of the equipment by this method is based on a dynamic substructure method in which the equipment-structure system is partitioned into the single-degree-ol-freedom system(SDOF) representing the equipment and the equipment support impedance representing the dynamic charactenstics of the structure ai the equipment support. A family of equipment response spectra is developed by applying this method to calculate the maximum responses of a family of SDOF equipment systems with wide banded equipment frequency, damping ratio, and mass. The method is validated by comparing the floor response spectrum from this method with the floor response spectrum generated from the rigorous analysis including equipments on the containment building of a prototypical nuclear power plant. in order to Investigate ESI effect in the response of equipment, response values from the method and the conventional approach without considering ESI are compared for the equipment having the mass less than 1% of the total structural mass. Response spectra from the method showed lower spectral amplitudes than those of the conventional floor response spectra around controlling frequencies.

Effects of Significant Duration of Ground Motions on Seismic Responses of Base-Isolated Nuclear Power Plants (지진의 지속시간이 면진원전의 지진거동에 미치는 영향)

  • Nguyen, Duy-Duan;Thusa, Bidhek;Lee, Tae-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.149-157
    • /
    • 2019
  • The purpose of this study is to investigate the effects of the significant duration of ground motions on responses of base-isolated nuclear power plants (NPPs). Two sets of ground motion records with short duration (SD) and long duration (LD) motions, scaled to match the target response spectrum, are used to perform time-history analyses. The reactor containment building in the Advanced Power Reactor 1400 (APR1400) NPP is numerically modeled using lumped-mass stick elements in SAP2000. Seismic responses of the base-isolated NPP are monitored in forms of lateral displacements, shear forces, floor response spectra of the containment building, and hysteretic energy of the lead rubber bearing (LRB). Fragility curves for different limit states, which are defined based on the shear deformation of the base isolator, are developed. The numerical results reveal that the average seismic responses of base-isolated NPP under SD and LD motion sets were shown to be mostly identical. For PGA larger than 0.4g, the mean deformation of LRB for LD motions was bigger than that for SD ones due to a higher hysteretic energy of LRB produced in LD shakings. Under LD motions, median parameters of fragility functions for three limit states were reduced by 12% to 15% compared to that due to SD motions. This clearly indicates that it is important to select ground motions with both SD and LD proportionally in the seismic evaluation of NPP structures.

Seismic Response of Seismically-Isolated Nuclear Power Plants considering Age-related Degradation of High Damping Rubber Bearing (고감쇠고무 적층받침의 경년열화를 고려한 원전구조물의 지진응답)

  • Park, Junhee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.131-138
    • /
    • 2013
  • The high damping rubber bearings contributed to reduce a seismic force transmitted to upper structures, the material properties of rubber changes with time and the rubber with age-related degradation can affect the seismic response of structures and equipments. Therefore the seismic response of structure considering age-related degradation of isolators should be evaluated. In this paper, the stiffness and damping for isolators were defined using the aging data proposed by other researchers. The reactor containment building and the auxiliary building were selected to conduct the nonlinear analysis and the natural frequency, maximum responses, floor response spectrum(FRS) were evaluated with time using the four earthquakes with different frequency contents. According to the analysis results, the seismic responses are increased by the age-related degradation of isolators and the detail inspections should be conducted up to 20 years because it was presented that the change of FRS was high during this period.

Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake (포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

Identifying significant earthquake intensity measures for evaluating seismic damage and fragility of nuclear power plant structures

  • Nguyen, Duy-Duan;Thusa, Bidhek;Han, Tong-Seok;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.192-205
    • /
    • 2020
  • Seismic design practices and seismic response analyses of civil structures and nuclear power plants (NPPs) have conventionally used the peak ground acceleration (PGA) or spectral acceleration (Sa) as an intensity measure (IM) of an earthquake. However, there are many other earthquake IMs that were proposed by various researchers. The aim of this study is to investigate the correlation between seismic responses of NPP components and 23 earthquake IMs and identify the best IMs for correlating with damage of NPP structures. Particularly, low- and high-frequency ground motion records are separately accounted in correlation analyses. An advanced power reactor NPP in Korea, APR1400, is selected for numerical analyses where containment and auxiliary buildings are modeled using SAP2000. Floor displacements and accelerations are monitored for the non- and base-isolated NPP structures while shear deformations of the base isolator are additionally monitored for the base-isolated NPP. A series of Pearson's correlation coefficients are calculated to recognize the correlation between each of the 23 earthquake IMs and responses of NPP structures. The numerical results demonstrate that there is a significant difference in the correlation between earthquake IMs and seismic responses of non-isolated NPP structures considering low- and high-frequency ground motion groups. Meanwhile, a trivial discrepancy of the correlation is observed in the case of the base-isolated NPP subjected to the two groups of ground motions. Moreover, a selection of PGA or Sa for seismic response analyses of NPP structures in the high-frequency seismic regions may not be the best option. Additionally, a set of fragility curves are thereafter developed for the base-isolated NPP based on the shear deformation of lead rubber bearing (LRB) with respect to the strongly correlated IMs. The results reveal that the probability of damage to the structure is higher for low-frequency earthquakes compared with that of high-frequency ground motions.

Seismic Response Evaluation of NPP Structures Considering Different Numerical Models and Frequency Contents of Earthquakes (다양한 수치해석 모델과 지진 주파수 성분을 고려한 원전구조물의 지진 응답 평가)

  • Thusa, Bidhek;Nguyen, Duy-Duan;Park, Hyosang;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the application of various numerical models and frequency contents of earthquakes on the performances of the reactor containment building (RCB) in a nuclear power plant (NPP) equipped with an advanced power reactor 1400. Two kinds of numerical models are developed to perform time-history analyses: a lumped-mass stick model (LMSM) and a full three-dimensional finite element model (3D FEM). The LMSM is constructed in SAP2000 using conventional beam elements with concentrated masses, whereas the 3D FEM is built in ANSYS using solid elements. Two groups of ground motions considering low- and high-frequency contents are applied in time-history analyses. The low-frequency motions are created by matching their response spectra with the Nuclear Regulatory Commission 1.60 design spectrum, whereas the high-frequency motions are artificially generated with a high-frequency range from 10Hz to 100Hz. Seismic responses are measured in terms of floor response spectra (FRS) at the various elevations of the RCB. The numerical results show that the FRS of the structure under low-frequency motions for two numerical models are highly matched. However, under high-frequency motions, the FRS obtained by the LMSM at a high natural frequency range are significantly different from those of the 3D FEM, and the largest difference is found at the lower elevation of the RCB. By assuming that the 3D FEM approximates responses of the structure accurately, it can be concluded that the LMSM produces a moderate discrepancy at the high-frequency range of the FRS of the RCB.