• Title/Summary/Keyword: Container crane control

Search Result 143, Processing Time 0.029 seconds

An Open-Architecture Hybrid Control System for Automated Container Cranes (자동화 컨테이너크레인의 개방형 하이브리드 제어시스템에 관한 연구)

  • Hong Kyung-Tae;Kim Sung-Hoon;Oh Seung-Min;Hong Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.510-517
    • /
    • 2005
  • In this paper, an open architecture control system for automated container cranes is investigated. The hardware architecture for automating cranes is first discussed. A standard reference model for cranes based upon the OSACA platform is proposed, in which three modules are suggested: hardware module, operating system module, and application software module. Finally, a hybrid control system combining deliberative and reactive controls for autonomous operations of the cranes is implemented.

A Study on Modelling and Tracking Control System Design of RTGC(Rubber-Tired Gantry Crane) (RTGC의 모델링 및 주행제어기 설계에 관한 연구)

  • Jeong, Ji-Hyun;Lee, Dong-Seok;Jeong, Jeong-Soon;Kim, Young-Bok
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.479-485
    • /
    • 2010
  • To handle container effectively is one of the most important factors in a port because working time is linked soon into cost. Since the middle of 1990s, RMGC(Rail-Mounted Gantry Crane) and RTGC(Rubber-Tired Gantry Crane) have been developed and widely used to operate containers in the yard. The RTGC is more difficult than RMGC in the automatic control system design. Although, the RTGC is largely advantaged to free driving environment, it has some considerable disadvantages in the system operating. In general, the problems are due to tire slip and lack of tire pressure etc. Therefore, a desirable research result has not been shown in this time. So, in this paper, we propose a new approach to design tracking control system for the RTGC in which the mathematical modeling is included. From the simulation results, the control performance of the designed control systems is evaluated.

A Study on Stabilization of Container Cranes Using an Optimal Modulation Controller (최적 변조제어기를 이용한 컨테이너 크레인의 안정화에 관한연구)

  • 허동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.630-636
    • /
    • 1999
  • In this paper in optimal modulation controller for position control and anti-sway of container crane systems is designed by a recursive algorithm that determines the state weighting matrix Q of a linear quadratic performance. The optimal modulation controller is based on optimal control. The basic feature of the recursive algorithm is the reduction of the number of iterations as well as minimization of the calculations involved So in order to obtain a mathematical model which rep-resents the equation of motion of the trolley and load Lagrange equation is used. The optimal modulation controller has been verified and simulated to show that it is robust when a load dis-turbance is applied and a reference is changed.

  • PDF

A Study for Effective Operating of Crane Using Monitoring Method (모니터닝 기법을 이용한 크레인의 운영 향상에 관한 연구)

  • Bae, Jong-Il;Hwang, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2759-2760
    • /
    • 2003
  • The contributing proportion of the increase of port productivity is more increasing concerning not only the port industry, but also all the informations of container crane which is the representative equipment by the rapid increase of the volume of freight of port. The basic of rapid service is the improvement of the productivity, the information of operation as to the productivity of crane for the quick handling within yard and especially the informations of breakdown and to handle breakdown as soon as possible has a great effect on the increase of productivity.

  • PDF

T-S Fuzzy Modeling for Container Cranes Using a RCGA Technique (RCGA 기법을 이용한 컨테이너 크레인의 T-S 퍼지 모델링)

  • Lee, Yun-Hyung;Yoo, Heui-Han;Jung, Byung-Gun;So, Myung-Ok;Jin, Gang-Gyoo;Oh, Sea-June
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.697-703
    • /
    • 2007
  • In this paper, we focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. A T-S fuzzy model is characterized by fuzzy "if-then" rules which represent the locally input-output relationship whose consequence part is described by a state space equation as subsystem. The T-S fuzzy model in container cranes first obtains a few number of linear models according to operation conditions and blends these conditions using fuzzy membership functions. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear system of a container crane. Simulations are given to illustrate the performance of T-S fuzzy model.

A Study on Performance Enhancement for Remote Operation of Industrial Equipments

  • Lho, Tae-Jung;Joo, Hyun-Woo;Kang, Dong-Jung;Song, Se-Hoon;Park, Ki-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.813-817
    • /
    • 2003
  • By increasing trades between countries, importance of harbors is becoming serious, including our country. When it comes to Container Crane Operation, the most important matter is how many containers are loaded in a truck or a ship by given time. This can be a crucial matter of harbors in taking care of materials. The present harbors' crane uses a wire-rope conveyance materials are transported in the air and have high free-angle of location. The sway can cause the delay of time, wrong position of Trolley and the damage of materials. In this study, we obtain the optimal PID parameters with GA(Genetic Algorithm) and apply those parameters to the PID Controller. In the result of the experimentation, we can see how effectively the PID controller, applied with the optimal parameters obtained by GA, can control the sway angle.

  • PDF

A Development of Anti-sway System for Real Application: Measurement and Control of Crane Motions Using Camera (실용화를 고려한 Anti-Sway 시스템 구축: 카메라를 이용한 크레인 운동 계측 및 제어)

  • Kawai, Hideki;Kim, Young-Bok;Choe, Yong-Woon;Yang, Joo-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.90-96
    • /
    • 2008
  • In general, the swing motions of a crane are controlled and suppressed by controlling the trolley motion. In many of our previous studies, we suggested a new type of anti-sway control system for a crane. In this proposed control system, a small auxiliary mass (moving-mass) is installed on the spreader and moving this auxiliary mass controls tire swing motion. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. However, measuring systems based on a laser sensor or other means are not veryuseful in real-worldapplications. So, in this paper, animage sensor is used to measure the motions of the spreader and the measured data are fed back to the controller in real time. The applied image processing technique is a kind of robust template matching method called Vector Code Correlation (VCC), which was devised to consider real environmental conditions. The H $\infty$ based control technique is applied to suppress the swing motion of the crane. Experimental results showed that the proposed measurement and control system based on an image sensor is useful and robust to disturbances.

Swing Motion Control System Design Based on Frequency-shaped LQ Control (주파수 의존형 최적 레귤이터에 의한 크레인 흔들림 제어계 설계)

  • Kim, Y.B.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.50-55
    • /
    • 2008
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In many papers reported by us, we suggested a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. Futhermore the measuring systems based on image sensor have been proposed also. To obtain the robustness for our control system, $H_{\infty}$ based control techniques and other approach have been applied to suppress swing motion. As well known, the robust control technologies based on $H_{\infty}$ control need complicated and difficult process. In the result, the obtained closed-loop system becomes to high order system which may give us many difficulties to apply it to the real plants. Therefore, we introduce an easy approach which is based on LQ control theory. In this approach, we introduce the frequency dependent weighting matrices which give the system filters to shape frequency characteristics of the controlled system and guarantee the control performance.

  • PDF

Anti-Sway Position Control of an Automated Transfer Crane Based on Neural Network Predictive PID Controller

  • Suh Jin-Ho;Lee Jin-Woo;Lee Young-Jin;Lee Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.505-519
    • /
    • 2005
  • In this paper, we develop an anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2 DOF PID controller. The simulation and experimental results show that the proposed control scheme guarantees performances, trolley position, sway angle and settling time in NNP PID controller than other controller. As the results in this paper, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard. Accordingly, the proposed algorithm in this study can be readily used for industrial applications.

Effects of Fleet-Angle on Sway Motions of a Cargo: Design Force Calculation (로프각이 화물의 진자운동에 미치는 영향: 설계력의 계산)

  • SHIN JANG-RYONG;PARK YONG-HYUN;GOH SUNG-HEE;HONG KEUM-SHIK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.77-86
    • /
    • 2005
  • Over the last 10 years, significant changes have taken place in the world of container shipping. The size and the speed of the quay-side crane have been increased considerably. As a result, the stiffness of a crane is decreased and the sway oscillation of cargo may become violent. The purpose of this paper is to determine the design force caused by the sway oscillation of the cargo, lifted by four ropes, with an initial fleet angle, and the governing equations of the lifting system for an anti-sway control system design.