• 제목/요약/키워드: Container Terminal Handling Cost

검색결과 24건 처리시간 0.148초

Analysis of Time-Driven ABC in Container Terminal (컨테이너터미널에서의 시간-동인활동기준원가의 분석)

  • Lee, Chae Min;Shin, Jae Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 한국항해항만학회 2014년도 추계학술대회
    • /
    • pp.7-8
    • /
    • 2014
  • One of the important factor for port selection is total handling charge(THC) of container terminal, and consequence of that the actual cost is vital for variation of THC. However, a great majority of the reported ABC applications have been limited to manufacturing and a little has been written on how the ABC approach can be used for logistics company especially for container terminal. This study proposes the applicable conceptual framework and cost management model based on Time-Driven Activity-Based Costing for container terminal.

  • PDF

Study on Construction of Simulation Model based on Analysis of Container Handling Database - A case of HICCT in Japan - (컨테이너터미널의 하역 데이터베이스 분석에 의한 하역시뮬레이션 모델 구축에 관한 연구 - 일본의 HICCT를 중심으로 -)

  • Kim, Hwa-Young
    • Journal of Navigation and Port Research
    • /
    • 제31권8호
    • /
    • pp.717-723
    • /
    • 2007
  • In recent years, the transportation sector has been undergoing very rapid and multifarious changes due to the M&A, alliances between shipping companies, introduction of larger container ship as it cost reduction measure and the application of integrated logistics to satisfy the needs of customers. Therefore, container terminal is required adequate terminal facilities, sufficient channel depth, efficient handling and low cost of port fees and dues. The purpose of this paper is for functional assessment of efficient container terminal. Firstly, the container operating process information about yard equipment and chassis is extracted through the analysis of practical daily work report of container terminal. Also, the formulae of skill factor and troubles of operator on transfer crane are defined. Lastly, container handling simulation model which consideration of skill factor and trouble of operator is proposed by Petri network model.

Finding Subjects for Automated Container Terminal Development by Systems Approach (시스템적 접근에 의한 자동화컨테이너터미널 개발 과제 도출)

  • 박창호;노홍승;정희균
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 한국항해항만학회 1998년도 추계학술대회논문집:21세기에 대비한 지능형 통합항만관리
    • /
    • pp.51-58
    • /
    • 1998
  • This study is to define the Automated Container Terminal(ACT) and container terminal system. Also, we analyze the present condition of the container terminal system in Pusan port and its automation level by systems approach. And this paper aims at evaluating on the priority of R&D investment until the beginning of the second stage of New Pusan Port Project(2006). In this process we have considered 8 factors (cost, labor, area, time volume, reliability, safety, convenience) to analyze 6 subsystems. The priority order of R&D until target year by sub-systems is as follow : Cargo Handling System〉Transfer System〉Port Entry System〉Storage System(Distribution&Manufacturing System included)〉Inland Transport System〉Port Information System.

  • PDF

The Analysis on the Determinations Factors of Container Port Competitiveness (컨테이너 항만경쟁력 결정요인 분석)

  • Lee, Ki-Tae;Baek, In-Hum
    • Journal of Fisheries and Marine Sciences Education
    • /
    • 제27권1호
    • /
    • pp.262-272
    • /
    • 2015
  • The aim of this study is to analysis factors that determine the competitiveness of container ports using the KJ and AHP methods. For this, 54 detailed attributing factors were identified both by previous studies and port users. 24 attributing factors were identified by a group of port experts. also, These were grouped 18 detailed attributing factors into 6 attributing factors by a group of port experts using the KJ method. These were made into a model of hierarchical structure with 3 levels, taking 1 goal factor, 6 evaluation factors and 18 detailed evaluation factors. The collected date of questionnaires were analyzed by a group of port experts using the AHP method. The analysis result of the evaluation factors in container port shows that port cargo volume is the most important factor, followed by port location, port cost, port service, port facility and port management. The analysis results of detailed evaluation factors in container port shows that import and export cargo volume is the most important factor, followed by transshipment cargo volume, distance from main trunk, cargo handling cost, distance from the point of importing and exporting, speediness of cargo handling, stability of cargo handling, vessel/cargo cost in port entry and leaving, punctuality in port entry and leaving, number and length of berth, collateral service cost, terminal area, hinterland accessibility, ability of terminal operation company, front depth of berth, etc.

Estimation of Users' Waiting Cost at Container Terminals in Northern Vietnam

  • Duc, Nguyen Minh;Kim, Sung-June;Jeong, Jung-Sik
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 한국항해항만학회 2017년도 추계학술대회
    • /
    • pp.27-29
    • /
    • 2017
  • Container terminals in Northern Vietnam have recorded an impressive development in recent years. This development, however, also raises a fierce competition among local container terminals to attract customers. Beside the handling charges, the vessels' waiting cost is also an important factor that drive the opinion of users in choosing appropriate terminal. This research plans to estimate the waiting cost in different container terminals in Northern Vietnam by building regression equation that describe the relationship between the rate of throughput/capacity and waiting cost/TEU. Queuing theory with the application of Poisson distibution is used to estimate the waiting time of arrival vessels and uncertainty theory is applied to estimate the vessel's daily expenses. Previous studies suggested two different formation of the equation and according to the research results, cubic equation is more suitable in the given case. The research results are also useful for further research which require calculation of waiting cost per TEU in each container terminal in Northern Vietnam.

  • PDF

A Study on the Type of Automatic Yard Operation for a Container Terminal

  • Choi, Hyung-Rim;Park, Nam-Kyu;Yoo, Dong-Ho;Kwon, Hae-Kyoung
    • Journal of Korea Port Economic Association
    • /
    • 제22권2호
    • /
    • pp.61-82
    • /
    • 2006
  • In order to cope with improvement of labor cost and cargo volume, Korean ports, especially Busan port, are in need of many new facilities. Of course, current facilities should be fully used, and at the same time it needs to make every effort to maximize its productivity as well as cost saving. To this end, this study has decided to focus on automatic yard operation suitable to the domestic container terminal environments, making a survey of many advanced container terminals, trying to find out their common factors, and finally suggesting several alternatives based on the combination of these factors. Also, this study has suggested the present value of initial investment and operating cost by alternative, and at the same time presented the relationship between cargo handling volume and cost/revenue of the optimal alternative, so that it may be of help in decision making.

  • PDF

Export Container Remarshaling Planning in Automated Container Terminals Considering Time Value (시간가치를 고려한 자동화 컨테이너 터미널의 수출 컨테이너 이적계획)

  • Bae, Jong-Wook;Park, Young-Man;Kim, Kap-Hwan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • 제33권2호
    • /
    • pp.75-86
    • /
    • 2008
  • A remarshalling is one of the operational strategies considered importantly at a port container terminal for the fast ship operations and heighten efficiency of slacking yard. The remarshalling rearranges the containers scattered at a yard block in order to reduce the transfer time and the rehandling time of container handling equipments. This Paper deals with the rearrangement problem, which decides to where containers are transported considering time value of each operations. We propose the mixed integer programming model minimizing the weighted total operation cost. This model is a NP-hard problem. Therefore we develope the heuristic algorithm for rearrangement problem to real world adaption. We compare the heuristic algorithm with the optimum model in terms of the computation times and total cost. For the sensitivity analysis of configuration of storage and cost weight, a variety of scenarios are experimented.

A Study on the Analysis of Container Physical Distribution System -Pusan Port Oriented- (물류시스템 분석에 관한 연구 - 부산항을 중심으로 -)

  • Park, C.H.;Lee, C.Y.
    • Journal of Korean Port Research
    • /
    • 제5권2호
    • /
    • pp.19-37
    • /
    • 1991
  • This work aims to : establish a model of the container physical distribution system of Pusan port comprising 4 sub-systems of a navigational system, on-dock cargo handling/transfer/storage system, off-dock CY system and an in-land transport system : examine the system regarding the cargo handling capability of the port and analyse the cost of the physical distribution system. The overall findings are as follows : Firstly in the navigational system, average tonnage of the ships visiting the Busan container terminal was 33,055 GRT in 1990. The distribution of the arrival intervals of the ships' arriving at BCTOC was exponential distribution of $Y=e^{-x/5.52}$ with 95% confidence, whereas that of the ships service time was Erlangian distribution(K=4) with 95% confidence, Ships' arrival and service pattern at the terminal, therefore, was Poisson Input Erlangian Service, and ships' average waiting times was 28.55 hours In this case 8berths were required for the arriving ships to wait less than one hour. Secondly an annual container through put that can be handled by the 9cranes at the terminal was found to be 683,000 TEU in case ships waiting time is one hour and 806,000 TEU in case ships waiting is 2 hours in-port transfer capability was 913,000 TEU when berth occupancy rate(9) was 0.5. This means that there was heavy congestion in the port when considering the fact that a total amount of 1,300,000 TEU was handled in the terminal in 1990. Thirdly when the cost of port congestion was not considered optimum cargo volume to be handled by a ship at a time was 235.7 VAN. When the ships' waiting time was set at 1 hour, optimum annual cargo handling capacity at the terminal was calculated to be 386,070 VAN(609,990 TEU), whereas when the ships' waiting time was set at 2 hours, it was calculated to be 467,738 VAN(739,027 TEU). Fourthly, when the cost of port congestion was considered optimum cargo volume to be handled by a ship at a time was 314.5 VAN. When the ships' waiting time was set at I hour optimum annual cargo handling capacity at the terminal was calculated to be 388.416(613.697 TEU), whereas when the ships' waiting time was set 2 hours, it was calculated to be 462,381 VAN(730,562 TEU).

  • PDF

Comparing Cycle Times of Advanced Quay Cranes in Container Terminals

  • Phan-Thi, Mai-Ha;Ryu, Kwangyeol;Kim, Kap Hwan
    • Industrial Engineering and Management Systems
    • /
    • 제12권4호
    • /
    • pp.359-367
    • /
    • 2013
  • The amount of international trade is rapidly increasing as a result of globalization. It is well known that as the size of a vessel becomes larger, the transportation cost per container decreases. That is, the economy-of-scale holds even in maritime container transportation. As a result, the sizes of containerships have been steadily increased for reducing transportation costs. In addition, various handling technologies and handling equipment have been introduced to increase the throughput capacities of container terminals. Quay crane (QC) that carries out load/unload operations plays the most important role among various handling equipment in terminals. Two typical examples of advanced QC concepts proposed so far are double trolley QC and supertainer QC. This paper suggests a method of estimating the expected value and the standard deviation of the container handling cycle time of the advanced QCs that involve several handling components which move at the same time. Numerical results obtained by the proposed estimation procedure are compared with those obtained by simulation studies. In order to demonstrate the advantage of advanced QCs, we compared their expected cycle times with those of a conventional QC.

An Economical Efficiency Comparison for Extend Method of Container Terminal Yard Scale followed by the Call of the Mega Ship (초대형 컨테이너선박의 기항에 따른 컨테이너 터미널 장치장 규모 확대방안의 경제성 비교)

  • Song, Yong-Seok
    • Journal of Navigation and Port Research
    • /
    • 제33권5호
    • /
    • pp.353-359
    • /
    • 2009
  • Most domestic container terminals are lack of container storage capacity compared to the throughput of container. The main reason is the difference between the theoretical capacity applied to the development of terminals and the real capacity of a berth Another reason seems to be the increase of the container crane in number per berth to match the need for the getting larger vessel, which is resulted from the increase of the berth capacity from the start. This study, therefore, aims to suggest the economic size of container yard by comparing the existing one. For this the berth capacity was recalculated, the required yard size derived considering up to 10,000TEU vessel and then cost comparison done.