• Title/Summary/Keyword: Container Design

Search Result 812, Processing Time 0.018 seconds

Relationship between Compressive Strength and Dynamic Modulus of Elasticity in the Cement Based Solid Product for Consolidating Disposal of Medium-Low Level Radioactive Waste (중·저준위 방사성 폐기물 처리용 시멘트 고화체의 압축강도와 동탄성계수의 관계)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Ji-Ho;Shin, Sang-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • Recently, the medium-low level radioactive waste from nuclear power plant must be transported from temporary storage to the final repository. Medium-low level radioactive waste, which is composed mainly of the liquid ion exchange resin, has been consolidated with cementitious material in the plastic or iron container. Since cementitious material is brittle, it would generate cracks by impact load during transportation, signifying leakage of radioactive ray. In order to design the safety transporting equipment, there is a need to check the compressive strength of the current waste. However, because it is impossible to measure strength by direct method due to leakage of radioactive ray, we will estimate the strength indirectly by the dynamic modulus of elasticity. Therefore, it must be identified the relationship between of strength and dynamic modulus of elasticity. According to the waste acceptance criteria, the compressive strength of cement based solid is defined as more than 3.44 MPa (500 psi). Compressive strength of the present solid is likely to be significantly higher than this baseline because of continuous hydration of cement during long period. On this background, we have tried to produce the specimens of the 28 day's compressive strength of 3 to 30 MPa having the same material composition as the solid product for the medium-low level radioactive waste, and analyze the relationship between the strength and the dynamic modulus of elasticity. By controling the addition rates of AE agent, we made the mixture containing the ion exchange resin and showing the target compressive strength (3~30 MPa). The dynamic modulus of elasticity of this mixtures is 4.1~10.2 GPa, about 20 GPa lower in the equivalent compressive strength level than that of ordinary concrete, and increasing the discrepancy according to increase strength. The compressive strength and the dynamic modulus of elasticity show the liner relationship.

Effectiveness of Leading Light by Reflecting the Characteristics of Marine Traffic at Gamcheon Port (감천항 선박교통 특성을 반영한 도등 효용성 분석)

  • Shin-Young Ha;Seung-gi Gug
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.232-238
    • /
    • 2024
  • This study examines the effectiveness of Gamcheon Port's leading lights in reflecting the characteristics of ship traffic entering the port. The leading light of Gamcheon Port was proposed and installed in 1996 during the basic design process of supplementing the port's route signs for the entry and exit of 4,000 TEU container ships. Since then, it has been improved to accommodate the entry of 50,000 DWT general cargo ships and to reflect the crane height of Hanjin Pier, as a result of a review study conducted by the Busan Regional Maritime Affairs and Fisheries Administration to improve the still temperature of Gamcheon Port by relocating existing outer facilities. However, an analysis of the current characteristics of maritime traffic at Gamcheon Port reveals that maritime traffic congestion is smooth and the proportion of small and medium-sized ships under 10,000 tons is higher than that of large ships, resulting in decreased efficiency of the leading lights to respond to the entry of large ships. Nevertheless, considering the increasing CAGR of the entry ratio of ships of 30,000 tons or more by 8.45%, preparations for the anticipated increase in the proportion of large ships entering the port in the future are necessary, and it is preferable to maintain the function of the leading lights rather than demolishing the entrance to Gamcheon Port. The narrow nature of the Gamcheon Port route poses a higher risk of collision when ships entering and exiting encounter each other, which can burden the navigator. Therefore, instead of maintaining the function of the leading lights, it is possible to relocate the conduction light to reduce maintenance burden and install a direction light in its place. When installing the direction light, it is worth considering using Double Sector Lights instead of the currently installed Single Sector Lights at nearby Busan Bukhang Port, as the former can improve user satisfaction by providing a clearer middle line and reducing difficulties in distinguishing between points.