• Title/Summary/Keyword: Contactor Breaker

Search Result 14, Processing Time 0.01 seconds

Opening Spring Modeling of Current Circuit Breaker Mechanism with respect to Opening Speed using Energy Method (전류 차단기 메커니즘에서 에너지방법을 이용한 차단 속도에 따른 스프링 모델링)

  • Kwon, Byung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.688-692
    • /
    • 2000
  • This study proposed design parameters of opening spring of circuit breaker that cut off the over-current in order to protect the electric device about opening speed using the energy method. We simulated the opening kinetic energy, the potential energy of opening spring and the design parameters of opening spring with respect to opening speed of VCB (Vacuum Circuit Breaker)'s moving contactor which has 24kV 25kA break capacity. From the result of simulation the initial tensional force and the final tensional force of the opening spring chose 107kgf and 282kgf respectively. Through the dynamic analysis using ADAMS, We verified that the opening speed of moving contactor satisfied break capacity of VCB and analyzed opening dynamic characteristics of VCB such as the opening displacement, the opening velocity and the opening acceleration of moving contactor in time domain.

  • PDF

Analysis of Electric Shock Accident on 4.16 kV Class Circuit breaker for Power Plant (발전소용 4.16 kV급 차단기에서 감전사고 사례 분석)

  • Park, Nam-Kyu;Song, Jae-Yong;Kim, Jin-Pyo;Goh, Jae-Mo
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.54-60
    • /
    • 2014
  • This paper describes electric shock accidents on a 4.16 kV class circuit breaker for power plant. Electric shock accidents mostly involve damage of human life, in comparison with electrical fire, rate of human death tend to be higher in electric shock accidents. Specially, in a high voltage facilities rate of human death comprised about 43.7% by electric shock accidents. If electric shock accidents happen in a 4.16 kV class circuit breaker for power plant, then the power plant discontinue power production. Electric shock accidents in a power plant have a great ripple effect such as an electric power shortage. In this paper, we analyzed electric shock accidents on a 4.16 kV class circuit breaker for power plant. From the analysis results, we confirmed a cause of electric shock accidents on a 4.16 kV class circuit breaker, it happened by defect of interlock equipment or occurrence of breakdown between first feeder contactor and shielding plate. In order to reduce electric shock accidents on a 4.16 kV class circuit breaker, the power plant should consider improvement of interlock equipment and insulation of feeder contactor in circuit breaker.

Fatigue Analysis of the Core Support of a Contactor Breaker (저압 회로차단기 코어 지지부의 피로해석)

  • Son, Jung-Ho;Park, Jin-Soo;Yoon, Il-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.93-98
    • /
    • 2001
  • Fatigue strength evaluation was carried out for the core support structure of a low voltage circuit breaker. The impact load acting on the core support was calculated based on the strains measured during operation. A three-dimensional finite element analysis was performed to determine local peak stresses for fatigue evaluation. Fatigue safety factors were calculated using the modified Goodman, Gerber, Soderberg, and modified Findley lines, considering the magnitude of the residual stress and impact load.

  • PDF

Dynamic Characteristic Analysis of Electric Actuator for 1 kV/3.2 kA Air Circuit Breaker Based on the Three-link Structure

  • Lee, Seung-Min;Kang, Jong-Ho;Kwak, Sang-Yup;Kim, Rae-Eun;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.613-617
    • /
    • 2011
  • In the present paper, a new type of electrical actuator, an electromagnetic force driving actuator (EMFA), applicable to air circuit breaker is developed and analyzed. Transient analysis is performed to obtain the dynamic characteristics of EMFA. The distribution of static magnetic flux is obtained using the finite element method. The coupled problems of electrics and mechanics governing equations are solved using the time-difference method. According to the interception rate of each contactor, investigation of the contactor spring load condition is conducted and applied to the threelink system. Comparisons of the dynamic characteristics of the three-link simulation and experimental data are performed.

Dynamic Characteristics Analysis of Electric Actuator (EMFA) for Air Circuit Breaker (ACB) with Three-bar Linkage structure (3링크를 적용한 기중차단기용 전자석 조작기(EMFA) 해석)

  • Lee, Seung-Min;Kang, Jong-Ho;Kwak, Sang-Yup;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.97-99
    • /
    • 2009
  • In this paper, a new type of electromagnetic actuator, an electro magnetic force driving actuator (EMFA) is developed and analyzed, applicable to air circuit breaker (ACB). Transient analysis is performed in order to obtain the dynamic characteristics of the EMFA. The distribution of static magnetic flux is obtained using the finite element method (FEM). The coupled problems of electrics and mechanics governing equations are solved using the time difference method (TDM). Also according to interception rate of each contactor, investigation about load condition of contactor spring is conducted, applied it to three-link system. And comparison about dynamic characteristics of three-link simulation and experiment data are performed.

  • PDF

Dynamic Motion Analysis of a Moving Contact by Electromagnetic Repulsion Force in MCCB (3D FEM해석을 통한 배선용 차단기의 가동자 거동해석)

  • Song, Jung-Chun;Kim, Yong-Gi;Ryu, Man-Jong;Seo, Jung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.786-789
    • /
    • 2002
  • The behaviour of contactors protected by arcs under short-circuit currents is analysed using a simple model to represent the electric circuit and the contactor. In most cases, the protection of contactors against short-circuit currents is entrusted to fuses. Fuses are suitable for preventing excessive damage to the contactor, or parts of the contactor, under short-circuit conditions. In particular, they are capable of limiting the thermal and electrodynamic stresses which can lead to arcing or welding together of the contacts of a contactor. This paper is the Dynamic Motion Analysis of a Moving Contact by Electromagnetic Repulsion Force in Molded Case Circuit Breaker(MCCB)

  • PDF

Design Review of Tulip Contactor by Garter Spring (가터스프링에 의한 튤립접촉자의 설계 고찰)

  • Cho, S.S.;Park, W.J.;Ahn, K.Y.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.242-245
    • /
    • 2003
  • A garter spring, which is a long, special, close-coiled extension spring with its ends joined to form a ring, is used in tulip contactor between vacuum circuit breaker and bus bar in switchgear. To carry short-time current and resist welding at the contact surface in the tulip contactor, the garter spring must transmits an uniform contact force to the contact surface through the contact chips arranged in the circumference of bus bar. In this paper, the system for measurement of the contact force by the garter spring is developed. Using the developed measurement system, the design of the connection structure including the garter spring is reviewed to obtain the uniform contact forces in all of contact chips.

  • PDF

Analysis of Fire Accident on DC Electric Traction Vehicles Caused by Breakdown in the Line Breaker (회로 차단기 절연파괴로 인한 직류 전기철도 화재 사고사례 분석)

  • Park, Nam-Kyu;Song, Jae-Yong;Goh, Jae-Mo;Kim, Jin-Pyo;Nam, Jung-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.16-21
    • /
    • 2017
  • Fire or electrical problem while DC electric traction vehicle operation caused by various reasons can lead to not only suspension of the operation, but also severe aftermath such as massive casualty. In this paper, fire analysis on DC electric traction vehicle caused by electrical breakdown on line breaker, which is in connection with the power supply, is presented. When the electric arc, the by-product of frequent line breaker operation, is not fully diminished, it leads to electrical breakdown and fire. Especially, electrical breakdown can be easily induced by the open-and-close operation of inner contractor inside line breaker, eventually followed by ground fault and generation of transient current. Electric arc is consequent on the ground fault and acts as possible ignition source, leading to fire. Also, during the repetitive operation of the line breaker, the contactor is separated each other and some copper powder is generated, and the copper powder provided breakdown path, resulting in fire.

A Study on the impact on the quality of hemming the number of hemming process (중소형 회로 차단기에 적용 가능한 한류 메커니즘의 개발)

  • Lee, Je-Duk;Park, Jong-Sik;Im, Jae-Guk;Park, Dong-Hee;Park, Min-Ho;Choi, Kye-Kwang;Kim, Sei-Hwan;Yun, Jae-Woong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 2016
  • Electrical equipment in factories, buildings, etc. with the development of the industry has become a large capacity. By the development, electric load also become diversified and there is also highly functional requirements being electrical equipment. Particularly in the small and medium-sized circuit breakers, tend to preferentially consider the economy stands out and improvements in safety, ease of mounting and connection through the modularity of the basic dimensions compact and cost to block expansion of the scope of the development of capacity, etc. The product having a competitive has been strongly required. In order to implement the circuit breakers of breaking capacity and compact at the same time taking into account the economic development of this technology applied to the current-limiting mechanism is essential budget or the current limiting mechanism is currently available mechanisms applicable to small and medium-sized frame (frame) can not do it. In this paper, at the same time satisfying the economic efficiency, by minimizing the load force of the moving contactor (moving contactor) to be applied to small and medium frame other hand to secure the economical efficiency without using high speed contact parting acceleration of the moving contactor conventional current-limiting mechanism, and to develop a current-limiting mechanism that can be satisfied with the same or higher performance to meet the needs of the market.

Study on the Dynamic Modeling of a MCCB Mechanism Including Electro-Magnetic Force Effect (전자기력의 영향을 포함한 MCCB 기구부의 동역학적 모델링 방법 연구)

  • Gang, Gyeong-Rok;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.362-368
    • /
    • 2001
  • To design a limiting MCCB (Molded Case Circuit Breaker) mechanism, a dynamic modeling of the mechanism in which the electro-magnetic force effects are incorporated needs to be developed. Conventionally, electro-magnetic effects were considered separately for the design of the mechanism. In this paper, an electro-magnetic force that is induced by limited current is identified and included in the dynamic modeling of the mechanism. Thus, the electro-magnetic which is defined as a external force and the mechanical effects are simultaneously considered for the design of the mechanism which is composed of contactor, spring , link, latch and so on.