• Title/Summary/Keyword: Contact-less transformer

Search Result 13, Processing Time 0.03 seconds

Efficiency Characteristics of Half-bridge Series Resonant Converter for the Contact-less Power Supply (Half-bridge 직렬공진 컨버터 적용 무접점 전원장치 효율특성)

  • Lee, Hyun-Kwan;Song, Hwan-Kook;Kim, Eun-Soo;Kim, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.884-891
    • /
    • 2007
  • Comparing with the conventional transformer without the air gap, a contact-less transformer with the large air-gap (4.8cm) between the long primary winding and the secondary winding has the increased leakage inductance and the reduced magnetizing inductance. By the increased leakage inductance and the reduced magnetizing inductance on the primary of the contact-less transformer, a good deal of the primary current circulates through magnetizing inductance, which results in a massive loss and the high voltage gain characteristics for load variations in contact-less power supply (CPS). To consider these characteristics, in this paper, the efficiency characteristics of the contact-less power supply using a series resonant converter is presented, described and verified through theoretical analysis, computer simulation and experimental test of 2.5kW prototype.

An Analysis on the Characteristics of the Contact-less Power Supply (무접점 전원장치의 특성분석)

  • Lee, Hyun-Kwan;Lee, Gi-Sik;Chung, Bong-Geun;Kang, Sung-In;Kong, Young-Su;Kim, Eun-Soo;Kim, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.919-922
    • /
    • 2006
  • Comparing with the conventional transformer without the air gap, a contact-less transformer with the large air-gap (4.8cm) between the long primary winding and the secondary winding has the increased leakage inductance and the reduced magnetizing inductance. By the increased leakage inductance and the reduced magnetizing inductance on the primary of the contact-less transformer, a good deal of the primary current circulates through magnetizing inductance, which results in a massive loss in contact-less power supply (CPS). In this paper, the efficiency characteristics of the contact-less power supply using a series resonant converter is analyzed and simulated. The results are verified on the simulation based on the theoretical analysis and the 1.8kW experimental prototype.

  • PDF

A Contact-less Power Supply for Photovoltaic Power Generation System (태양광 발전 시스템을 위한 무접점 전원장치)

  • Lee, Hyun-Kwan;Kong, Young-Su;Kim, Yoon-Ho;Lee, Gi-Sik;Kang, Sung-In;Chung, Bong-Geun;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer Is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without my auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transformer are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

Comparison of Higher-Order Resonant Topologies for Contact-less Power Converter Systems (무접점 전력용 변환기의 다중공진형 토폴로지 비교)

  • Thenathayalan, Daniel;Park, Joung-Hu
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.323-324
    • /
    • 2014
  • A higher-order power converter topology for an extremely low coupling (less than 0.15) transformer with high efficiency and wide air-gap (23 mm) is presented in this paper. Among the typical resonant converter topologies for contact-less power transferring systems, Series-Series Resonant Converter (SSRC) and Series-Parallel Resonant Converter (SPRC) are widely used in number of power electronic applications. However, when coupling coefficient of a transformer is seriously low (k<0.5), the series-series resonant converter will possibly operate at short circuited condition because of the small magnetizing impedance. To solve this problem, a modified and improved topology of seventh-order resonant converter for contact-less power converter system is proposed and the results are presented.

  • PDF

The Metal Detection using Primary Current in Contact-less Power Supply (무접점 전원공급 시 1차측 전류를 이용한 금속 물질 검출에 관한 연구)

  • Kim, Yu-Seok;Yu, Joo-Hee;Kim, Choon-Sam;Sung, Won-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.445-452
    • /
    • 2012
  • The impurity detection method applied to existing discriminated the normality(R, L, C) and impurity(Metal) load using mutual RFID/ID method in the contactless power supply in which the primary side and the secondary side are completely separation by using the contactless transformer. However, this kind of system is caused the high cost of the system and complexity of control. Therefore, in this paper was proposed the contact-less power transfer using the primary current that determine normality or impurity load by compare the primary current Amplitude to reference quantity value and design the 3[W] contact-less power transfer and conduct an experiment for demonstrate the validity.

A Contact-less Power Supply using LLC resonant converter for Photovoltaic Power Generation System (태양광 발전 시스템을 위한 LLC 직렬공진컨버터 적용 무접점 전원장치)

  • Lee, H.K.;Lee, G.S.;Kang, S.I.;Kong, Y.S.;Kim, E.S.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.347-350
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer. Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without any auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transfonner are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

  • PDF

Contact-less Power Supply Using Series-Parallel Rasonant Converter ($\cdot$병렬 공진형컨버터를 이용한 비접촉전원)

  • Kim E. S.;Goo D. H.;Kim J. M.;Kang D. H.;Shin B. C.;Kong Y. S.;Yang S. C.
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.103-107
    • /
    • 2002
  • A contact-less power supply system (CPS) allows electrical energy to supply to mobile consumers without any electrical or mechanical contact. CPS works in the same principle as a transformer, with the track litz cable forming the primary circuit and the pickup as the secondary. The track power supply generates the high frequency alternating current in the track cable. The captured AC magnetic field generated by the track conductors produces electrical energy in the pickup coil and the pickup rectifier converts the high frequency AC power to DC while regulating the power to the load. This paper presents the theoretical analysis, simulation and experiment리 results of the series-parallel resonant converter working as contact-less power supply system.

  • PDF

Contactless Power Supply for DC Power Service in Hybrid Home Generation System (직류수용가 서비스를 위한 무접점 전원장치)

  • Kang, J.W.;Song, H.K.;Kim, J.H.;Kim, E.S.;Kim, Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.104-107
    • /
    • 2007
  • Among the alternative energy sources, the solar energy is recognized as an important energy source and its application is increasing. Especially in future, the hybrid solar energy generation system with battery will be widely used as an independent distributed power generation system. In this paper, a solar power hybrid home generation system using a contact-less power supply (CPS) that can transfer an electric power without any mechanical contact by using magnetic coupling instead of the power transfer by directly supplying the DC power to the home electric system is proposed. The proposed system consists of a ZVS boost converter, a half bridge LLC resonant converter and contact-less transformer.

  • PDF

Characteristic of IPT coupling factor with various air-gap and winding position for PRT (PRT용 Cut core 공극 및 권선위치에 따른 IPT 결합계수 특성)

  • Han, K.H.;Lee, B.S.;Kwon, S.Y.;Park, H.J.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.223-225
    • /
    • 2007
  • The contact-less inductive power transformer (IPT) uses principle of electromagnetic induction. Generally, there were many methods to improve the transfer performance of traditional transformer. But, though the principle of IPT is similar to that of general transformer, it is impossible to apply the methods because of large air-gap. Consequently, many linear numerical formulas for analysis of performance and design of traditional transformer cannot be used in development of IPT. The concept of the IPT for vehicle like PRT(Personal Rapid Transit) system is suggested and some suggestions for power collector(core & winding) design of IPT to improve power transfer performance arc presented in this paper. The characteristic of power delivery with these novel methods in design is presented by simulation and examination.

  • PDF

High precision Automatic Voltage Regulator by using series transformer (직렬 변압기를 이용한 고정밀 자동전압조절기)

  • Zhang, Lei;Lee, Hwa-Chun;Jung, Tae-Uk;Nam, Hae-Kon;Nam, Soon-Ryul;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.574-576
    • /
    • 2008
  • Now there are two types Non-contact compensation AC automatic voltage regulator (A.V.R). One is transformer compensation regulator, whose principle is the combination of multiple compensation transformers, do the compensation by turning on and off the connections of the transformer through the multi-full bridge circuit. This method removed the mechanical drive and contacts, which increases the life and the dynamic performance of the A.V.R. However, the compensation is multilevel, and it needs many compensation transformers and switches, the circuit is complex, the compensation precision is low. Another type is PWM switch AC regulator, whose principle is getting the AC voltage from the input, then induce the AC compensation voltage through commutating and high frequency PWM transforming, and phase tracking. Here the compensation is step-less, the compensation precision is high, and the response is fast. But the circuit is complex, and it needs an inverse compensation transformer, which is difficult to realize high-power applications. In this paper, it shows an Automatic Voltage Regulator which use high frequency PWM inverter do compensation. This A.V.R has the function as the custom-power, which make the performance of the power supply in a high level.

  • PDF