• Title/Summary/Keyword: Contact-free Linear Actuator

Search Result 4, Processing Time 0.025 seconds

Driving Algorithm for Contact-free Linear Actuator (비접촉 선형 구동기를 위한 구동 알고리즘)

  • 이상헌;백윤수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1034-1037
    • /
    • 2003
  • Recently in the field of precision positioning device, the contact-free actuators are gaining focuses with their outstanding performances by eliminating mechanical frictions. Th is paper is about the driving algorithm for contact-free linear actuator. The proposed driving algorithm has similar structure of drives of switched reluctance motor and reduces the normal forces and force ripple. The simulation and experiment are executed to verify the proposed method.

  • PDF

Switched Reluctance Contact-Free Linear Actuator Using Attractive Magnetic Forces (자기 흡인력에 의한 비접촉식 SR 형 선형 구동기)

  • 이상헌;정광석;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.47-55
    • /
    • 2003
  • In the development of positioning device for precision manufacturing and measuring, the friction from mechanical contact causes serious decrease of performance. In this study, we studied about variable reluctance type contact-free linear actuator to overcome drawbacks from friction. In the view of electromagnetics, we analyzed and derived theoretical magnetic force equation and designed structure for generating suspension and propulsion force simultaneously. In the view of dynamics, we derived equation of motion and identified the stability of the system. Finally, we verified the feasibility of the proposed system.

Contact-free Linear Actuator Using Active Magnetic Bearing (능동 자기 베어링을 이용한 비접촉식 선형 구동기)

  • 이상헌;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.91-98
    • /
    • 2003
  • In the field of precision manufacturing demanding high positioning performance, the mechanical friction in positioning device deteriorates the quality of the product and increases the cost of production for positioning devices. Therefore, we propose a contract-free linear actuator using active magnetic bearing. The structure and operating principle of the proposed system are explained, and the magnetic forces are analyzed by magnetic circuit theory to design magnetic bearings and linear actuator. With the derived equation of motion, the stability is identified. Experimental results are presented to show the feasibility.

Magnetically Suspended Contact-Free Linear Actuator for Precision Stage

  • Lee, Sang-Heon;Baek, Yoon-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.708-717
    • /
    • 2003
  • With the development of precision manufacturing technologies, the importance of precision positioning devices is increasing. Conventional actuators, dual stage or mechanically contacting type, have limitation in coping with performance demands. As a possible solution, magnetic suspension technology was studied. Such a contact-free system has advantages in terms of high accuracy, low production cost and easy adaptability to high precision manufacturing processes. This paper deals with magnetically suspended multi-degrees of freedom actuator which can realize large linear motion. In this paper, the operating principle is explained with the magnetic force analysis, and the equations of motion are derived. Experimental results of the implemented system are also given.