• Title/Summary/Keyword: Contact tip

Search Result 290, Processing Time 0.026 seconds

FEM Analysis on Rolling Contact Fatigue Crack of a Railway Wheel (철도 차륜의 구름접촉 피로 균열에 관한 유한요소해석)

  • Kim, Ho-Kyung;Yang, Kyoung-Tak;Kim, Hyun-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.8-14
    • /
    • 2007
  • In this study, tensile and fatigue crack propagation tests machined from actual wheels were performed. FEM analysis also was performed on the crack that was assumed to be 15 mm in depth under the wheel tread surface. The stress intensity factors K I and K II at the crack tip under the stress($P_{max}=911.5MPa$) due to a rolling contact were analyzed for crack growth characteristics. As a result, the perpendicular crack was found to be more dangerous compared to the parallel one. It is found that in the wheel fatigue crack, parallel to the wheel tread surface, the crack with its length 2a = 2.4mm starts to propagate due to the fact that the effective stress intensity factor access to the threshold stress intensity factor($K_{th}=16.04MPa{\sqrt{m}}$) of the wheel.

Mechanical characteristics of involute-circular arc composite tooth profile (인벌류우트-圓弧 合成齒形의 諸特性)

  • 변준형;최상훈;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.870-875
    • /
    • 1986
  • In this study, full-rounded tip curve of rack and its mating fillet curve of pinion in Involute-circular arc composite tooth profile are derived. Mechanical characteristics are calculated analytically, i.e., Specific sliding, Nominal bending stress at working root circle and the Contact factor of the arc of contact in circular arc part to the arc of double contact. These characteristics compared with standard involute tooth profile are improved in circular arc part of composite tooth profile. To obtain more efficient composite tooth profile, we studied these characteristics with regard to the changes of unwound angle and radius of circualr arc. And a design method of composite tooth profile is suggested. Composite tooth profile are compared with standard involute tooth profile.

Study on the Fatigue Crack Initiation Life Under Spherical Contact (구 접촉하에서의 피로균열 시작수명에 관한 연구)

  • Jo, Yong-Ju;Kim, Tae-Wan;Lee, Mun-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1269-1276
    • /
    • 2001
  • In case of contact fatigue, the accurate calculation of surface tractions and subsurface stress is essential to the predication of crack initiation life. Surface tractions influencing shear stress amplitude have been obtained by contact analysis based on influence function. Subsurface stress has been obtained by using rectangular patch solutions. In this study, to simulate asperity contact under sliding condition, the tip of asperity was simulated by sphere and to calculate crack initiation life in the substrate, dislocation pileup theory was used.

Tip-over Terrain Detection Method based on the Support Inscribed Circle of a Mobile Robot (지지내접원을 이용한 이동 로봇의 전복 지형 검출 기법)

  • Lee, Sungmin;Park, Jungkil;Park, Jaebyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1057-1062
    • /
    • 2014
  • This paper proposes a tip-over detection method for a mobile robot using a support inscribed circle defined as an inscribed circle of a support polygon. A support polygon defined by the contact points between the robot and the terrain is often used to analyze the tip-over. For a robot moving on uneven terrain, if the intersection between the extended line of gravity from the robot's COG and the terrain is inside the support polygon, tip-over will not occur. On the contrary, if the intersection is outside, tip-over will occur. The terrain is detected by using an RGB-D sensor. The terrain is locally modeled as a plane, and thus the normal vector can be obtained at each point on the terrain. The support polygon and the terrain's normal vector are used to detect tip-over. However, tip-over cannot be detected in advance since the support polygon is determined depending on the orientation of the robot. Thus, the support polygon is approximated as its inscribed circle to detect the tip-over regardless of the robot's orientation. To verify the effectiveness of the proposed method, the experiments are carried out using a 4-wheeled robot, ERP-42, with the Xtion RGB-D sensor.

Structure Optimization of a Slot-Die Head with a Hydrophobic Micro-Patterns for Stripe Coatings (소수성 마이크로 패턴을 갖는 Stripe 코팅용 슬롯 다이 헤드 구조 최적화)

  • Yoo, Su-Ho;Lee, Jin-Young;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.6-10
    • /
    • 2019
  • In the presence of $\mu-tip$ for narrow stripe coating, there appears lateral capillary flow along the hydrophilic head lip because the $\mu-tip$ has some resistance to flow. It was known to be suppressed by increasing the contact angle of the head lip. In this paper, we have demonstrated by computational fluid dynamics(CFD) simulations that it can also be suppressed by the formation of micro-patterns on the shim and meniscus guide embedded into the slot-die head. To optimize the micro-patterned structure, we have performed simulations by varying the groove width, depth, and clearance. In the absence of micro-patterns, it is shown by experiment and simulation that the solution spreads to a distance of $1,300{\mu}m$ from the ${\mu}-tip$. In the presence of micro-patterns with the groove width and clearance of $50{\mu}m$, the distance the solution spreads is reduced to $260{\mu}m$. However, no further suppression in the capillary flow is observed with micro-patterns with the groove width of $40{\mu}m$ or less. It is also observed that the capillary flow is not affected by the groove depth if it is larger than $10{\mu}m$. We have shown that the distance the solution spreads can be reduced further to $204{\mu}m$ by coating a hydrophobic material (contact angle of $104^{\circ}$) on the surface of micro-patterns having the groove width and clearance of $50{\mu}m$.

Studies on the Haustorium of Cuscuta japonica. II. The Endophyte (새삼(Cuscuta japonica)의 흡기(吸器)에 관한 연구(硏究) II. 숙주조직(宿主組織)에 침투(侵透)한 흡기(吸器))

  • Lee, C.D.;Lee, K.B.
    • Applied Microscopy
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 1985
  • The portion of Cuscuta japonica haustorium which lies internal to the host tissues, the endophyte, was examined at the ultrastructural level. The endophyte consisted of mainly small parenchymatous cells and large, slightly elongate cells at the tip. The tip cells were characterized by the presence of large and lobed nucleus, several small vacuoles, dense cytoplasm, abundant rough endoplasmic reticulum, dictyosomes, and mitochondria, and thus suggested to have a high metabolic activity. The shape, arrangement, and cytological characteristics of the parenchymatous and tip cells consisting the endophyte were very similar to those of the dividing cells and idioblasts, respectively, which appeared in the endophyte primordium of the upper haustorium. The tip cells with the thickened-apical wall were observed to grow intrusively through the host cell walls and to engulf the remnants of the degenerated host cells. In the former case intrusive growing cell was regarded to develop into the filamentous cell, the hypha. Plasmodesmata through the cell wall were not observed between host and parasite cells. Some host cells that in contact with the penetrating tip cells of the endophyte, showed the degenerating features such as a loss of cytoplasm, a beaded fashion of small vesicles, and deformation of chloroplasts.

  • PDF

A Study on the Wear of Rail by Fracture Mechanics (파괴역학을 이용한 차륜과 레일의 마모에 관한 연구)

  • 구병춘
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.315-322
    • /
    • 1998
  • A two dimensional elasto-plastic finite element program taking into account contact between crack surfaces if developed in order to analyze subsurface cracking in rolling contact. But the friction between upper and lower surface of the crack is not considered. Under the assumptions of small deformation and small displacement, the incremental theory of plasticity is used to describe plastic deformation. J-integral is computed as the applied Hertzian load slides over the surface with friction. J-integral is correlated with wear rate of the rail. The propagation rate of the right tip of the surface crack is fast by 45% than that of the left side.

  • PDF