• Title/Summary/Keyword: Contact shear force

Search Result 123, Processing Time 0.023 seconds

An Experimental Study on Shear and Rotation Stiffness in the Connection Parts of Shores (동바리 연결부의 전단 및 회전 강성 실험)

  • Kwk, Soon-Seop;Kim, Ho-Soo;Jung, Sung-Jin;Hong, Geon-Ho;Lee, Kyoung-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.848-855
    • /
    • 2003
  • During concrete placement, the partially distributed load due to the concrete placement paths creates the lateral force in the connection parts of the shore. In order to restrain this lateral force, the nails must be used in the upper and lower connection parts of shores. But, for the convenience of the construction and dismantling of the shores, the workers hardly use the nails. In this case, the connections of shore cannot resist the shear force and rotation. And this situation may cause the collapse of form-shore system. Therefore, contact and spring models for the connection analysis of the form-shore systems are required. If we take into account this construction situation, we need to understand the effects of shear and rotation stiffness according to the several types of connection parts in shores as a case study. This study evaluates the shear and rotation stiffness of the connection parts of shores according to the variations of the lengths, numbers and positions of nails, and then presents the experimental results depending on the end conditions of shores. And, these results can be used as a spring model and critical load evaluation data for the connection analysis of form-shore system.

Mechanical Characteristics of High Tension Bolted Joint Connections using Shear Ring (전단링을 사용한 고장력볼트 이음부의 역학적 특성에 관한 연구)

  • Lee, Seung Yong;Park, Young Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.327-338
    • /
    • 2006
  • Friction type high tension bolted joints is one of the most common steel structure connections and requires significant concerns on axial force of the bolts. However, its high shear capacity is not appropriately considered in design and hence the number of bolts is over-designed than actually required. It is primarily due to a slip-load-based design method. This study, therefore, suggests a new technology of connection using a shear ring, which may reduce the shortcomings from the friction-typed high tension bolted joints and maximize the advantages from the bearing-typed joints. Experimental and numerical studies were performed to compare the capacity of the suggested method with traditional high tension bolted joints. From the results, it is known that the suggested connections has higher bearing capacity than friction-typed high tension bolted joints due to the higher shear resistance from the ring. For further study, it may be necessary to investigate on design parameters including the depth of shear ring, for increased connection capacity.

Material Properties for Reliability Improvement in the FEA Results for Rubber Parts (고무 제품 유한요소해석 결과의 신뢰 향상을 위한 물성치 연구)

  • Baek, Un-Cheol;Cho, Maeng-Hyo;Hawong, Jai-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1521-1528
    • /
    • 2011
  • We studied the material properties for reliability improvement in finite element analysis results for a nitrile butadiene rubber hub-bearing seal and for a carbon-filled rubber mount used in a vehicle. It was difficult to measure the material properties of hundreds of types of rubber for the mount design. Thus, we suggested that the engineering stressstrain relations from pure shear test data could be synthesized by using simple tension data and Poisson's ratio. We defined Poisson's ratio by using a function of principal stretches to synthesize the stress-strain relations for a pure shear test. A transformation of the pure shear data was applied to the experimental values to obtain the predicted results when the strain approaches 100%. In the finite element analysis for the contact force of a hub-bearing seal, the strain results that used the transformation of the pure shear data and simple tension data almost corresponded to the experimental values. Ogden constants were used to analyze.

FE Analysis on the Structural Behavior of a Double-Leaf Blast-Resistant Door According to the Support Conditions (지지조건 변화에 따른 양개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Sung-Wook;Moon, Jae-Heum;Kim, Won-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.339-349
    • /
    • 2020
  • Double-leaf blast-resistant doors consisting of steel box and slab are application-specific structures installed at the entrances of protective facilities. In these structural systems, certain spacing is provided between the door and wall. However, variation in the boundary condition and structural behavior due to this spacing are not properly considered in the explosion analysis and design. In this study, the structural response and failure behavior based on two variables such as the spacing and blast pressure were analyzed using the finite element method. The results revealed that the two variables affected the overall structural behavior such as the maximum and permanent deflections. The degree of contact due to collision between the door and wall and the impact force applied to the door varied according to the spacing. Hence, the shear-failure behavior of the concrete slab was affected by this impact force. Doors with spacing of less than 10 mm were vulnerable to shear failure, and the case of approximately 15-mm spacing was more reasonable for increasing the flexural performance. For further study, tests and numerical research on the structural behavior are needed by considering other variables such as specifications of the structural members and details of the slab shear design.

Induction Mechanism of Planar Arrangement in Cholesteric Liquid Crystals (콜레스테릭 액정의 Planar 배열 유도 메카니즘)

  • Jung, Gap-Ha;Lee, Mong-Ryong;Seo, In-Seon;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.272-276
    • /
    • 2011
  • The induction mechanisms of planar arrangements in cholesteric liquid crystals (CLC) which showed selective reflections of visible light were investigated by measuring the selective reflectivity and FTIR peak intensity of $C{\equiv}N$ stretching band. Although the planar arrangement of CLC was not as perfectly induced as the cases prepared with using alignment layers, it could be also induced by stretching polymer substrate or by applying shear forces. The planar arrangements were induced by forming CLC helical structures on top of liquid crystal molecules which were in contact with the substrate and oriented all in the same direction.

The Evaluation of Surface and Adhesive Bonding Properties for Cold Rolled Steel Sheet for Automotive Treated by Ar/O2 Atmospheric Pressure Plasma (대기압 Ar/O2 플라즈마 표면처리된 자동차용 냉연강판의 표면특성 및 접착특성평가)

  • Lee, Chan-Joo;Lee, Sang-Kon;Park, Geun-Hwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • Cold rolled steel sheet for automotive was treated by Ar/$O_2$ atmospheric pressure plasma to improve the adhesive bonding strength. Through the contact angle test and calculation of surface free energy for cold rolled steel sheet, the changes of surface properties were investigated before and after plasma treatment. The contact angle was decreased and surface free energy was increased after plasma treatment. And the change of surface roughness and morphology were observed by AFM(Atomic Force Microscope). The surface roughness of steel sheet was slightly changed. Based on Taguchi method, single lap shear test was performed to investigate the effect of experimental parameter such as plasma power, treatment time and flow rate of $O_2$ gas. Results shows that the bonding strength of steel sheet treated in Ar/$O_2$ atmospheric pressure plasma was improved about 20% compared with untreated sheet.

Simulation of displacement history using contact element in traditional wooden frame (접촉요소를 적용한 전통목조 도리방향 프레임의 변위이력 시뮬레이션에 관한 연구)

  • Hwang Jong-Kuk;Hong Sung-Gul;Jung Sung-Jin;Lee Young-Wook;Kim Nam-Hee;Bae Byoung-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.421-426
    • /
    • 2006
  • To examine the behaviors of traditional wooden structural frame in Korea in direction of beam, an experimental study was performed. The interior frame of Daewoongjeon of Bongjeongsa was selected as a model, which has two short exterior columns and one high inside column. The experimental frame has 1/2 scale and lateral forces are applied at high inside column by using drift control. The vertical gravity loads are applied on the frame. From the results of experiment it was shown that the stiffness and lateral capacity of the frame was increased when vertical loads are applied and the force-drift relationship in positive load direction was not same as in negative load direction. And push-over analysis are performed by using macro model in which the rotational and shear springs which were derived from the another experiments of subassemblies were used. The numerical analysis with macro model showed a good correspondence with the experiment within 2% story drift.

  • PDF

The Parametric Study Effecting on the Fatigue Life of Rail on High Speed Railway (고속철도 레일의 피로수명에 영향을 미치는 매개변수 연구)

  • Park, Yong-Gul;Kang, Yoon-Suk;Go, Dong-Chun;Sung, Deok-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.396-404
    • /
    • 2009
  • With developing the next generation high speed railway, there need to be plans to make sure of running safety though researchs on the crack and break of rail by rolling contact fatigue. Therefore, this study performed the parametric analysis effecting on the fatigue life of rail using simplified equations. It analyzed the internal stress of rail according to the track quality, train velocity, wheel radius, track stiffness, sleeper space, wheel load. For the more, via the finite element method, it analyzed shear force on the rail head which could be changed by the early length of crack, angle of crack and temperature. As a result, this study continued the main parameter effecting on the fatigue life of rail.

Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.69-97
    • /
    • 2017
  • In this study, nonlinear response of laminated functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate under low-velocity impact based on the Eshelby-Mori-Tanaka approach in thermal conditions is studied. The governing equations are derived based on higher-order shear deformation plate theory (HSDT) under von $K\acute{a}rm\acute{a}n$ geometrical nonlinearity assumptions. The finite element method with 15 DOF at each node and Newmark's numerical integration method is applied to solve the governing equations. Four types of distributions of the uniaxially aligned reinforcement material through the thickness of the plates are considered. Material properties of the CNT and matrix are assumed to be temperature dependent. Contact force between the impactor and the laminated plate is obtained with the aid of the modified nonlinear Hertzian contact law models. In the numerical example, the effect of layup (stacking sequence) and lamination angle as well as the effect of temperature variations, distribution of CNTs, volume fraction of the CNTs, the mass and the velocity of the impactor in a constant energy level and boundary conditions on the impact response of the CNTRC laminated plates are investigated in details.

A Study on Serviceability of Oversized Bolt Hole in High-Tension Bolt Joint Subjected to Bending (휨을 받는 고장력볼트 체결부에서 과대공에 따른 사용성에 관한 연구)

  • Park, Jeong-Ung;Yang, Seung-Hyun;Jang, Suk-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2831-2836
    • /
    • 2009
  • If a design load exceeding the frictional force of the contact surface is applied to the connection of steel members using a high-tension bolt friction joint, sliding occurs and the connection of the steel members bears the design load through the shear strength and bearing strength of the bolt and the base plate. The sliding distance can be determined by the tensile force of the bolt, the friction coefficient of the contact surface, and the position of the bolt in the base plate hole. This study measured and analyzed sliding according to standard bolt hole and oversize bolt hole when pure bending moment and tensile force were applied to high-tension bolt joints with different sizes of bolt holes made in the base plate and the cover plate. In a high-tension bolt joint receiving pure bending moment and tensile force, the load causing sliding in an oversize bolt hole was $74\sim94%$ of that in a standard bolt hole. In a member receiving tensile force, the sliding load ratio was lower when the size of oversize bolt holes in the base plate and the cover plate was large. In addition, the size of the oversize bolt hole in the base plate was more closely correlated with the change of sliding loadthan the size of the oversize bolt hole in the base plate.