• Title/Summary/Keyword: Contact point

Search Result 1,217, Processing Time 0.03 seconds

Multi-point Dynamic Displacement Measurements of Structures Using Digital Image Correlation Technique (Digital Image Correlation기법을 이용한 구조물의 다중 동적변위응답 측정)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • Recently, concerns relating to the maintenance of large structures have been increased. In addition, the number of large structures that need to be evaluated for their structural safety due to natural disasters and structural deterioration has been rapidly increasing. It is common for the structural characteristics of an older large structure to differ from the characteristics in the initial design stage, and changes in dynamic characteristics may result from a reduction in stiffness due to cracks on the materials. The process of deterioration of such structures enables the detection of damaged locations, as well as a quantitative evaluation. One of the typical measuring instruments used for the monitoring of bridges and buildings is the dynamic measurement system. Conventional dynamic measurement systems require considerable cabling to facilitate a direct connection between sensor and DAQ logger. For this reason, a method of measuring structural responses from a remote distance without the mounted sensors is needed. In terms of non-contact methods that are applicable to dynamic response measurement, the methods using the doppler effect of a laser or a GPS are commonly used. However, such methods could not be generally applied to bridge structures because of their costs and inaccuracies. Alternatively, a method using a visual image can be economical as well as feasible for measuring vibration signals of inaccessible bridge structures and extracting their dynamic characteristics. Many studies have been conducted using camera visual signals instead of conventional mounted sensors. However, these studies have been focused on measuring displacement response by an image processing technique after recording a position of the target mounted on the structure, in which the number of measurement targets may be limited. Therefore, in this study, a model experiment was carried out to verify the measurement algorithm for measuring multi-point displacement responses by using a DIC (Digital Image Correlation) technique.

Control of Crowning Using Residual Stress induced by the Difference of Tehermal Expansion Between Ceramic and Carbon Steel in Ceramic Cam Follower (열팽창계수차에 기인된 잔류응력을 이용한 세라믹 캠 팔로우어의 크라우닝 제어)

  • Choe, Yeong-Min;Lee, Jae-Do;No, Gwang-Su
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.703-708
    • /
    • 2000
  • As the engine design changes to get high efficiency and performance of commercial diesel engine, surface w wear of the earn follower becomes an important issue as applied load increasing at the contact face between cam follower and cam. We developed the ceramic cam follower made of sili$\infty$n nitride ceramic which was more wear resistant than the cast iron or sintered metal cam follower. Ceramic cam follower was made by direct brazing of thin ceramic disk to steel body using an active brazing alloy without the interlayer. In-situ crowning(R), resulted from the difference of thermal expansion coefficient between ceramic and carbon steel after direct brazing without any stress-relieving inter]ayer, could be controlled. When a earbon steel was heated above $A_{c1}$ point and then c$\infty$led, the expansion curve represented a hysteresis. Appropriate crowning was achieved below the $A_{c1}$ point(about $723^{\circ}C$) and crowning increased with brazing temperature exponentially above the $A_{c1}$ point. Optimum brazing temperature range was from 700 to $720^{\circ}C$. We developed successfully the ceramic cam follower having appropriate crowning and being inexpensive. Also we could successfully control the crowning of ceramic earn follower by hysteresis behavior of thermal expansion of earbon steel during direct brazing process.

  • PDF

Deriving geological contact geometry from potential field data (포텐셜 필드 자료를 이용한 지짙학적 경계 구조 해석)

  • Ugalde, Hernan;Morris, William A.
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.40-50
    • /
    • 2010
  • The building process of any geological map involves linking sparse lithological outcrop information with equally sparse geometrical measurements, all in a single entity which is the preferred interpretation of the field geologist. The actual veracity of this interpretative map is partially dependent upon the frequency and distribution of geological outcrops compounded by the complexity of the local geology. Geophysics is commonly used as a tool to augment the distribution of data points, however it normally does not have sufficient geometrical constraints due to: a) all geophysical inversion models being inherently non-unique; and b) the lack of knowledge of the physical property contrasts associated with specific lithologies. This contribution proposes the combined use of geophysical edge detection routines and 'three point' solutions from topographic data as a possible approach to obtaining geological contact geometry information (strike and dip), which can be used in the construction of a preliminary geological model. This derived geological information should first be assessed for its compatibility with the scale of the problem, and any directly observed geological data. Once verified it can be used to help constrain the preferred geological map interpretation being developed by the field geologist. The method models the contacts as planar surfaces. Therefore, it must be ensured that this assumption fits the scale and geometry of the problem. Two examples are shown from folded sequences at the Bathurst Mining Camp, New Brunswick, Canada.

Experimental Study on the Stimulating Effect of Commercial Moxa Combustion through the Measurement of Temperature - Focused on ascending temperature gradient and effective stimulating period - (온도 측정을 통한 상용 쑥뜸의 자극효과에 대한 실험적 연구 - 승온속도 및 유효자극기를 중심으로 -)

  • Lee, Geon-Mok;Lee, Gun-Hyee;Lee, Seung-Hoon;Yang, Myung-Bok;Go, Gi-Deok;Seo, Eun-Mi;Jang, Jong-Deok;Hwang, Byung-Chan
    • Journal of Acupuncture Research
    • /
    • v.19 no.3
    • /
    • pp.64-76
    • /
    • 2002
  • Objective : The purpose of this study is to investigate the mechanism and effect of moxibustion objectively and to be used as the quantitative data for developing the new thermal stimulating treatment by observing the combustion characteristics of commercial moxaes. Methods : We have selected two types(large-size moxa A(LMA), large-size moxa B(LMB)) among large moxaes used widely in the clinic. We examined combustion times, temperatures, temperature gradients in each period during a combustion of moxa. Results : 1. The ascending temperature gradient measured in the central point of non-contacted surface was fastest, the average ascending temperature gradient of both moxaes was $0.0384^{\circ}C/sec$, $0.0123^{\circ}C/sec$ respectively, 3.1 times faster in LMA. The maximum ascending temperature gradient was also about 2.9 times faster in LMA. The time required for the maximum ascending temperature gradient from ignition was 254sec, 411sec respectively. 2. The minimum descending temperature gradient in the retaining period was $-0.0250^{\circ}C/sec$, $-0.0090^{\circ}C/sec$ respectively and the average descending temperature gradient was $-0.0160^{\circ}C/sec$, $-0.0037^{\circ}C/sec$ respectively on the non-contact surface. 3. On the basis of the non-contact surface($A_I$), the time at which the effective stimulus period began to occur was about 264sec, 796sec respectively after an ignition, the time at which the maximum temperature began to occur was about 373sec, 1323sec respectively after an ignition, and the maximum temperature was $0.9^{\circ}C$ higher in LMA. The maximum ascending temperature gradient was also about 4.2 times faster in LMA. Conclusion : It was thought that not only the figure of moxicombustion device, but also the form and size of moxa had influence on the combustion characteristics deciding the performance of stimulus seriously.

  • PDF

Remote field Eddy Current Technique Development for Gap Measurement of Neighboring Tubes of Nuclear Fuel Channel in Pressurized Heavy Water Reactor (중수로 핵연료채널과 인접관의 간격측정을 위한 원거리장 와전류검사 기술개발)

  • Jung, H.K.;Lee, D.H.;Lee, Y.S.;Huh, H;Cheong, Y.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • Liquid Injection Nozzle(LIN) tube and Calandria tube(CT) in pressurized Heavy Water Reactor (PHWR) are .ross-aligned horizontally. These neighboring tubes can contact each other due to the sag of the calandria tube resulting from the irradiation creep and thermal creep, and fuel load, etc. In order to judge the contact which might be the safety concern, the remote field eddy current (RFEC) technology is applied for the gap measurement in this paper. LIN can be detected by inserting the RFEC probe into pressure tube (PT) at the crossing point directly. To obtain the optimal conditions of the RFEC inspection, the sensitivity, penetration and noise signals are considered simultaneously. The optimal frequency and coil spacing are 1kHz and 200mm respectively. Possible noises during LIN signal acquisition are caused by lift-off, PT thickness variation, and gap variation between PT and CT. The simulated noise signals were investigated by the Volume Integral Method(VIM). Signal analysis on the voltage plane describes the amplitude and shape of LIN and possible defects at several frequencies. All the RFEC measurements in the laboratory were done in variance with the CT/LIN gap and showed the relationship between the LIN gap and the signal parameters by analyzing the voltage plane signals.

Effect of Work Intensity on Fit Factor and Affecive Quality of Dustproof Mask (작업 강도가 방진 마스크의 밀착도와 감성품질에 미치는 영향)

  • Lee, Jinsil;Cho, Sunhee;Yun, Jungmin;Kim, Min-Sun;Park, Jaekyu;Choe, Jaeho
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.2
    • /
    • pp.301-310
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the effect of work intensity on fit factor and affective quality of the dustproof Background: Among the victims who suffer pneumoconiosis due to the inhalation of toxic substances or the lack of oxygen during the work, the proportion of the victims is larger than the other causes. Wearing a respirator may prevent pneumoconiosis, but it can be hazardous to workers because of the leakage through filters, cartridges, exhaust valves, broken parts, and face-to-face contact. Despite leakage through the contact area between the mask and the face has various causes such as the wearer's activity, sweat accumulation, facial shape, etc., There is a lack of relevant research and regulation compared to developed countries that have already institutionalized the law 30 years ago and give the right to sell through a test Method: The work intensity was adjusted by walking or running at 6km/h and 11km/h on the treadmill, and tasks were defined with reference to the test procedure and the exercise sequence applied in the face leakage test of the dustproof mask. And fit factor was measured objectively using 'Respirator Fit Tester 8038' which measures fit factor calculated by dividing the number of dust present outside the mask by inside the mask. In addition, affective quality was classified by the ease of use, ease of breathing, and ease of wearing, and was measured using the 5-point likert scale questionnaire. Results: There was a significant difference in fit factor, ease of breathing, and wearing convenience according to work intensity and no significant difference in ease of use(${\alpha}=0.01$). And when the work intensity was high, fit factor, ease of breathing, and wearing convenience were all lower than when the work intensity was low. Conclusion: In Korea, it is necessary to consider consideration of the work intensity when testing the leakage rate of the face part for safety certification of the respiratory protective equipment, When developing a mask, it should be possible to maintain high adhesion even under intense, active situation and high temperature conditions by selecting materials, improving the wearing style, and expanding the adjustable range.

Fluxless Bonding Method between Sn and In Bumps Using Ag Capping Layer (Ag층을 이용한 Sn과 In의 무 플럭스 접합)

  • Lee Seung-Hyun;Kim Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.23-28
    • /
    • 2004
  • We utilized Ag capping layer for fluxless bonding. To investigate the effect of Ag capping layer, two sets of sample were used. One set was bare In and Sn solders. The other set was In and Sn solders with Ag capping layer. In ($10{\mu}m$) and Sn ($10{\mu}m$) solders were deposited on Cu/Ti/Si substrate using thermal-evaporation, and Ag ($0.1{\mu}m$) capping layers were deposited on In and Sn solders. Solder joints were made by joining two In and Sn deposited specimens at $130^{\circ}C$ for 30 s under 0.8, 1.6, 3.2 MPa using thermal compression bonder. The contact resistance was measured using four-point probe method. The shear strength of the solder joints was measured by the shear test of cross-bar sample in the direction. The microstructure of the solder joints was characterized with SEM and EDS. In and Sn solders without Ag capping layers were only bonded at $130^{\circ}C$ under high bonding pressure. Also the shear strength of the In-Sn solder joints under was lower than that of the Ag/In-Ag/Sn solder joints. The resistance of the solder joints was $2-4\;m{\Omega}$ The solder joints consisted of In-rich phase and Sn-rich phase and the intermixed compounds were found at the interface. As bonding pressure increased, the intermixed compounds formed more.

  • PDF

The Effect of Human Brand Characteristics of Customer Service Employees on Brand Attitude (서비스 접점직원의 휴먼브랜드적 특성이 브랜드 태도에 미치는 영향)

  • Park, So-Young;Kim, Yong-Ho
    • Management & Information Systems Review
    • /
    • v.36 no.4
    • /
    • pp.187-209
    • /
    • 2017
  • Service industry performance and competitive advantage depend on the attitudes and behavior of customer service employees who produce and deliver services through contact with customers. Most studies on customer service employees so far have concentrated on kindness, attitudes, or benefits. This study focuses on the increasing importance of customer service employees and intends to study them from the viewpoint of human brands that recognize customer service employees as a brand. In addition to the role of the employee at the service contact point, the customer participation behavior affects the interaction process with the customer service employee. Ultimately, customers could no longer be excluded from control to improve service quality. This study based on theory that the human brand characteristics of the customer service employees lead the customer's participation, which has a positive effect on the relationship with the service brand and the service brand attitude surveyed and analyzed customers who use service brand. This study is summarized as follows. First, the relationship between the service brand and the customer is examined. Second, this study also expands prior studies by examining the human brand characteristics of customer service employees and customers' willingness to participate in providing information on the impact of the consumer-brand relationship. The results of the study indicate that among the customer service employees' human brand characteristics reliability, familiarity, and empathy were found to affect the relationship between customers, the service brand, and the attitude toward the service brand the most. This study provides important implications for theoretical and practical strategies by examining the qualities and characteristics of customer service employees, which are the most important agents of marketing.

  • PDF

Finite Element Stress Analysis of Implant Prosthesis according to Position and Direction of Load (하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소법적 응력분석)

  • Bae, Sook-Jin;Chung, Chae-Heon;Jeong, Seung-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.257-268
    • /
    • 2003
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis according to position and direction of load, under vertical and inclined loading using FEA analysis. The finite element model was designed according to standard fixture (4.1mm restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric usp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant in both vertical and oblique loading but stresses in the cancellous bone were low in both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. 4. The relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 5. The magnitude of the stress in the supporting bone, fixture and abutment screw was greater with the outward oblique loading than with the inward oblique loading and was the greatest under loading at the centric cusp in a $30^{\circ}$ outward oblique direction. Conclusively, this study provides evidence that bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. But it seems to be more important that how long is the distance from center of rotation of the implant itself to the resultant line of force from occlusal contact(leverage). The goal of improving implants should be to avoid bending of the implant.

Finite Element Stress Analysis of Implant Prosthesis of Internal Connection System According to Position and Direction of Load (임플랜트-지대주의 내측연결 시스템에서 하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소 응력분석)

  • Jang, Jong-Seok;Jeong, Yong-Tae;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis of internal connection system(ITI system) according to position and direction of load, under vertical and inclined loading using finite element analysis (FEA). The finite element model of a synOcta implant and a solid abutment with $8^{\circ}$ internal conical joint used by the ITI implant was constructed. The gold crown for mandibular first molar was made on solid abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric cusp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant under both vertical and oblique loading but stresses in the cancellous bone were low under both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. So, the relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 4. In this internal conical joint, vertical and oblique loads were resisted mainly by the implant-abutment joint at the screw level and by the implant collar. Conclusively, It seems to be more important that how long the distance is from center of rotation of the implant itself to the resultant line of force from occlusal contact (leverage). In a morse taper implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. This type of implant-abutment connection can also distribute forces deeper within the implant and shield the retention screw from excessive loading. Lateral forces are transmitted directly to the walls of the implant and the implant abutment mating bevels, providing greater resistance to interface opening.