• Title/Summary/Keyword: Contact point

Search Result 1,218, Processing Time 0.033 seconds

Multi-point displacement monitoring of bridges using a vision-based approach

  • Ye, X.W.;Yi, Ting-Hua;Dong, C.Z.;Liu, T.;Bai, H.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.315-326
    • /
    • 2015
  • To overcome the drawbacks of the traditional contact-type sensor for structural displacement measurement, the vision-based technology with the aid of the digital image processing algorithm has received increasing concerns from the community of structural health monitoring (SHM). The advanced vision-based system has been widely used to measure the structural displacement of civil engineering structures due to its overwhelming merits of non-contact, long-distance, and high-resolution. However, seldom currently-available vision-based systems are capable of realizing the synchronous structural displacement measurement for multiple points on the investigated structure. In this paper, the method for vision-based multi-point structural displacement measurement is presented. A series of moving loading experiments on a scale arch bridge model are carried out to validate the accuracy and reliability of the vision-based system for multi-point structural displacement measurement. The structural displacements of five points on the bridge deck are measured by the vision-based system and compared with those obtained by the linear variable differential transformer (LVDT). The comparative study demonstrates that the vision-based system is deemed to be an effective and reliable means for multi-point structural displacement measurement.

Development of a Handheld Sheet Resistance Meter with the Dual-configuration Four-point Probe Method

  • Kang, Jeon-Hong;Lee, Sang-Hwa;Yu, Kwang-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1314-1319
    • /
    • 2017
  • A handheld sheet resistance meter that can easily and quickly measure the sheet resistance of indium tin oxide films was developed. The dual-configuration four-point probe method was adopted for this instrument, which measured sheet resistance in the range from $0.26{\Omega}/sq$. to $2.6k{\Omega}/sq$. with 0.3 % ~ 0.5 % uncertainty. The screen of the instrument displayed the sheet resistance when the probe was in contact with the sample surface and the value continued to be displayed during the probe contact. Even after separating the probe from the surface, the value was still displayed on the screen and could be read easily. A feature of the instrument was the use of the dual-configuration technique to reduce edge effects markedly compared with the single-configuration technique and its ease of operation without applying correction factors for sample size and thickness.

Optical characteristics of the UV intensity distribution in a non-contact type UV photoreactor (비접촉식 자외선 반응조에서 자외선 강도 분포의 광학적 특성)

  • Jeon, Hwa-Bong;Yun, Jung-Won;Kim, Sung-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.257-264
    • /
    • 2012
  • The concept of a non-contact type of UV disinfection system was introduced in this study. UV lamps and their quartz sleeves hang over the water surface and there is no interface between the sleeve and water. Obviously, there is no fouling. Based on optical laws and other UV distribution models, a detail mathematical model for a non-contact type UV disinfection system was developed in this study. Pathway length of UV light in a non-contact type photoreactor is longer than that in a submerged type photoreactor because the light is more refractive while passing through 3 interfaces of medium. But the pathway length passing through the water media is not significantly longer than that in a submerged type photoreactor so, the absorption of UV light by water is not significantly different from the other system. Due to the reflection effect, UV intensity is rapidly decreased as the horizontal distance from the light source is increased. The reflective attenuation in a non-contact type photoreactor is higher than that in a submerged type photoreactor. These mean that the short photoreactor is advantageous than the narrow-long photoreactor for the non-contact type photoreactor in an optical point of view.

Correlation between the linear impulse and ball spin rate (선 충격 량과 공의 회전 속도와의 상관관계)

  • Roh, Woo-Jin;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.870-874
    • /
    • 2007
  • Golf ball spin rate after impact with club is created by the contact force, which is greatly influenced by ball and club mass, material, impact speed, and club loft angle. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of the ball, and the tangential force creates the spin. Especially, the tangential force takes either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail. It is shown in this work that the linear impulse of the tangential force is directly related to generation of back spin rate of golf ball. The linear impulse can be calculated from the tangential force, which depends upon many factors such as ball and club mass, material, impact speed, and club loft angle. In this research, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and the contact time at impact between golf club head and ball are computed using FEM.

  • PDF

Correlation between the Linear Impulse and Ball Spin Rate (선 충격량과 공의 회전 속도와의 상관관계)

  • Roh, Woo-Jin;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1127-1132
    • /
    • 2007
  • Golf ball spin rate after impact with club is created by the contact force, which is greatly influenced by ball and club mass, material, impact speed, and club loft angle. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of the ball, and the tangential force creates the spin. Especially, the tangential force takes either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail. It is shown in this work that the linear impulse of the tangential force is directly related to generation of back spin rate of golf ball. The linear impulse can be calculated from the tangential force, which depends upon many factors such as ball and club mass, material, impact speed, and club loft angle. In this research, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and the contact time at impact between golf club head and ball are computed using FEM.

A Study on the Effect of the Contact Electrode Slits in the Vacuum Interrupter with Axial Magnetic Field Type (종자계형 진공 인터럽터에서 접점전극 슬릿의 영향에 관한 연구)

  • 하덕용;강형부;최승길;최경호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.9
    • /
    • pp.822-829
    • /
    • 2002
  • This paper deals with the distribution characteristics of the current density and axial magnetic flux density for each slits made on the contact electrode in the vacuum interrupter with axial magnetic field type using 3-dimension finite element analysis. It has been known that the presence of an axial magnetic field parallel to the current flow in the arc plasma can increase the high current breaking capacity of vacuum interrupter by carrying out the arc plasma from constricted mode to diffusion mode. The axial magnetic field is created of itself by current flow in the segments of coil electrode behind the contact electrode. The analyzed results show that if the slits are made in the contact electrode, they can increase the current density and axial magnetic flux density in the contact electrode surface and at the gap distance, which is due to decrease the effect of eddy currents flowing in the contact electrode. The phase shift due to eddy currents, defined 3s time difference between the maximum value of current and axial magnetic field, is decreased still more by increasing the number of slits made in the contact electrode at the center point of gap distance. These results demonstrate that 3-dimension finite element analysis has a great deal of merits in the development and evaluation of new electrode at the design of vacuum interrupter.

Evaluation of occlusal strength using T-Scan Novus and Dental prescale II in dental prosthodontic treatments: A case report (보철물 수복 형태에 따른 T-Scan Novus와 Dental prescale II를 이용한 교합력 평가 활용 증례)

  • Su-Hyun Choi;Yu-Sung Choi;Jong-Hyuk Lee;Seung-Ryong Ha
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.2
    • /
    • pp.160-178
    • /
    • 2023
  • Diagnosis and analysis of occlusal relationships are important factors in prosthetic treatment. A thorough occlusion analysis and evaluation should be performed before treatment to restore a stable interocclusal relationship. Analysis and evaluation are essential during the treatment process and at regular follow-ups. Recently, with the development of dental equipment and digital processing methods, new quantitative analysis methods that can record the patient's occlusal relationship have been introduced. Among them, the T-Scan Novus (Tekscan Inc., S. Boston, MA, USA) displays the strength of the initial contact point and the occlusal contact point of the teeth using a pressure sensor. With this, occlusal contact time of the teeth, anteroposterior and left-right balance of occlusal force can be compared. The Dental prescale II (GC Co., Tokyo, Japan) scans the occlusal contact point using a pressure-sensing film and analyzes the density of the contact point. It can measure the distribution and strength of the occlusal force of the teeth in the most natural occlusion state. Based on this, appropriate prosthetic treatment (four-unit fixed partial denture, removable partial denture, complete denture, and complete oral restoration cases) was performed according to the area and extent of the patient's tooth loss. The patient's occlusion at the first visit, treatment stage, right after treatment, and regular follow-up were compared and evaluated using a quantitative method for appropriate occlusion analysis using T-Scan Novus and Dental prescale II. This report enhances the understanding of occlusion analysis during prosthetic restoration. The results satisfied both the clinician and patients in terms of function and aesthetics.