• Title/Summary/Keyword: Contact modeling

Search Result 540, Processing Time 0.028 seconds

[ $PFC^{3D}$ ] Modeling of Stress Wave Propagation Using The Hopkinson's Effect ($PFC^{3D}$ 상에서의 홉킨슨 효과를 이용한 응력파의 전파모델링)

  • Choi Byung-Hee;Ryu Chang-ha
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.27-42
    • /
    • 2005
  • An explosion modeling technique was developed by using the spherical discrete element code, $PFC^{3D}$, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a $PFC^{3D}$ particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). The stress wave propagation modeling was conducted by simulating the experimental approach based on the Hopkinson's effect combined with the spatting phenomenon that had previously been developed to determine the dynamic tensile strength of Inada granite. As a result, the stress wave velocity obtained by the proposed modeling technique was 4167 m/s, which is merely $3\%$ lower than the actual wave velocity of 4300 m/s for an Inada granite.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

Mathematical Modeling about Magnetic Attractive Force of Magnetic Bearing (자기베어링 구동용 전자석의 흡인력에 대한 수학적 모델링)

  • Choi, G.H.;Yang, J.H.;Choung, K.G.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.64-68
    • /
    • 2012
  • Because the magnetic bearing supports levitating body without contact, wear, noise and vibration are very small comparing with mechanical bearings, it is very useful to high revolution machinery. In general, the magnetic attractive force function that is proportional to square of control current(x), and inversely proportional to square of an air gap(i) has been widely used. This paper proposed the new magnetic attractive force function that is proportional to cube of the control current, and inversely proportional to square of the air gap. The function was optimized to minimize the cost function that is the percentage of deviation about the change of a proportional constant(k), using the experimental data, ie, control currents and air gaps.

Study on the Effects of System Parameters on the High Cycle Fatigue Life Based on Structural Dynamic Analysis of a Turbine Blade System (터빈 블레이드의 구조동역학해석에 근거한 시스템 인자들의 고사이클 피로수명에 대한 영향도분석)

  • Kwon, Sung-Hun;Song, Pil-Gon;Park, Jong-Hyun;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.875-879
    • /
    • 2007
  • The effects of the statistical properties of the Coulomb friction coefficients on the dynamic responses of a galloping quadruped robot are investigated in this paper. In general, the Coulomb friction coefficients are assumed to be deterministic for a controller design to achieve required motion characteristics. However, the friction coefficients between the ground and the robot legs are not constant in reality. Therefore, statistical characteristics of the friction coefficients need to be considered for a multi-body modeling of the robot galloping on the ground. The effects of the statistical properties on the dynamic responses of the quadruped robots are investigated.

  • PDF

Study on DC Characteristics of 4H-SiC Recessed-Gate MESFETs (Recessed-gate 4H-SiC MESFET의 DC특성에 관한 연구)

  • Park, Seung-Wook;Hwang, Ung-Jun;Shin, Moo-Whan
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • DC characteristics of recessed gate 4H-SiC MESFET were investigated using the device/circuit simulation tool, PISCES. Results of theoretical calculation were compared with the experimental data for the extraction of modeling parameters which were implemented for the prediction of DC and gate leakage characteristics at high temperatures. The current-voltage analysis using a fixed mobility model revealed that the short channel effect is influenced by the defects in SiC. The incomplete ionization models are found out significant physical models for an accurate prediction of SiC device performance. Gate leakage is shown to increase with the device operation temperatures and to decrease with the Schottky barrier height of gate metal.

Study on Scratch Defect of Roll Forming Process (롤포밍공정에서의 스크래치 결함에 대한 연구)

  • Kim, Nak-Su;Hong, Seok-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1213-1219
    • /
    • 2001
  • In this paper, modeling of the multi-pass roll forming process with the finite element method and defect prediction in roll forming process are presented. In the roll forming process, there occurs the defect of scratch. It appears on tubes because of the friction between the strip and the roll, the unexpected sliding velocity and the contact pressure when fabricating the tubes. The surface of the product will be not uniform due to the defect. The scratch can be predicted with the simulation modeling of the finite element method, and can be avoided by modifying the design.

Finite element modeling of the influence of FRP techniques on the seismic behavior of historical arch stone bridge

  • Mahdikhani, Mahdi;Naderi, Melika;Zekavati, Mehdi
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • Since the preservation of monuments is very important to human societies, different methods are required to preserve historic structures. In this paper, 3D model of arch stone bridge at Pont Saint Martin, Aosta, Italy, was simulated by 1660 integrated separate stones using ABAQUS$^{(R)}$ software to investigate the seismic susceptibility of the bridge. The main objective of this research was to study a method of preservation of the historical stone bridge against possible earthquakes using FRP techniques. The nonlinear behavior model of materials used theory of plasticity based on Drucker-Prager yield criterion. Then, contact behavior between the block and mortar was modeled. Also, Seismosignal software was used to collect data related to 1976 Friuli Earthquake Italy, which constitutes a real seismic loading. The results show that, retrofitting of the arch stone bridge using FRP techniques decreased displacement of stones of spandrel walls, which prevents the collapse of stones.

Modeling of a Non-contact Type Precision Magnetic Displacement Sensor (비접촉식 정밀 변위 측정용 자기센서 모델링)

  • Shin, Woo-Cheol;Hong, Jun-Hee;Lee, Kee-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.42-49
    • /
    • 2005
  • Our purpose is to develop a precision magnetic displacement sensor that has sub-micron resolution and small size probe. To achieve this, we first have tried to establish mathematical models of a magnetic sensor in this paper. The inductance model that presents basic measuring principle of a magnetic sensor is based on equivalent magnetic circuit method. Especially we have concentrated on modeling of magnetic flux leakage and magnetic flux fringing. The induced model is verified by experimental results. The model, including the magnetic flux leakage and flux fringing effects, is in good agreement with the experimental data. Subsequently, based on the augmented model, we will design magnetic sensor probe in order to obtain high performances and to scale down the probe.

On-line Modeling of Robot Assembly with Uncertainties (불확실한 환경에서의 조립 작업을 위한 온라인 모델링 방법)

  • 정성엽;황면중
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.878-886
    • /
    • 2004
  • Uncertainties are inevitable in robotic assembly in unstructured environment since it is difficult to construct fixtures to guide motions of robots. This paper proposes an augmented Petri net and an algorithm to adapt the assembly model on-line during actual assembly process. The augmented Petri net identifies events using force and position information simultaneously. Unmodeled contact states are identified and incorporated into the model on-line. The proposed method increases the level of intelligence of the robot system by enhancing the autonomy. The proposed method is evaluated by simulation and experiments with L-type peg-in-hole assembly using a two-arm robot system.

Study on DC Analysis of 4H-SiC Recessed-Gate MESFETs using modeling tools (4H-SiC Recessed-gate MESFET의 DC특성 모델링 연구)

  • Park, Seung-Wook;Kang, Soo-Chang;Park, Jae-Young;Shin, Moo-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.238-242
    • /
    • 2001
  • In this paper, the current-voltage characteristics of a 4H-SiC MESFET is simulated by using the Atlas Simulation tool. we are able to use the simulator to extract more information about the new material 4H-SiC, including the mobility, velocity-field Curve and the Schottky barrier height. We have enabled and used the new simulator to investigate breakdown Voltage and thus predict operation limitiations of 4H-SiC device. Modeling results indicate that the Breakdown Voltage is 197 V and Current is 100 mA

  • PDF