• 제목/요약/키워드: Contact modeling

검색결과 539건 처리시간 0.03초

COVID-19 접촉자 추적 기술에 대한 평가 기준 마련 및 보안성 비교·분석 (Evaluation Criteria for COVID-19 Contact Tracing Technology and Security Analysis)

  • 이호준;김승주;이상진
    • 정보보호학회논문지
    • /
    • 제30권6호
    • /
    • pp.1151-1166
    • /
    • 2020
  • COVID-19 감염 확산을 효과적으로 막기 위해 최근 ICT 기술을 기반으로 하는 접촉자 추적 기술이 사용되고 있으며, 이 기술들에는 추적 방식에 따라 다양한 유형이 존재한다. 하지만 이러한 기술들은 항상 보안 위협에 노출되어 있으며 각각의 유형에 따라 발생 가능한 위협도 다양하다. 본 논문에서는 다양한 유형의 접촉자 추적 기술에서 공통적으로 발생하는 프로세스들을 확인하고 이 과정에서 발생할 수 있는 위협을 식별하였다. 이를 통해 다양한 유형의 접촉자 추적 기술 모두에 적용 가능한 공통된 평가 기준을 도출하였으며, 이를 실제 공개된 접촉자 추적 기술에 적용하여 유형 별 비교 분석을 수행하였다. 이러한 연구는 여러 유형 간의 비교를 통해 안전하고 효과적인 접촉자 추적 기술을 선택하는데 도움이 될 수 있을 것이다.

핀하중을 받는 유리/에폭시 평직 적층판의 체결부 강도 (Strength of Glass/Epoxy Fabric Joints under the Pin-Loading)

  • 박노희;권진희;김종훈;변준형;양승운
    • Composites Research
    • /
    • 제15권2호
    • /
    • pp.1-10
    • /
    • 2002
  • 본 논문에서는 특성길이 방법과 실험을 통하여 핀하중을 받는 평직 유리/에폭시 적층판 체결부의 강도를 평가하였다. 특성길이 및 강도에 영향을 미치는 인자들의 효과를 연구하기 위해, 핀과 원공이 접하는 부분에 코사인 하중을 가할 경우와, 적절한 변위경계조건으로 처리할 경우, 접촉요소를 사용하여 비선형 해석을 수행하는 경우 등 총 세가지 방법으로 특성길이 및 강도를 계산하였다. 또한 체결부의 강도는 사용하는 파손식의 영향을 받게 되므로 Tsai-Wu 파손식과 Yamada-Sun 파손식을 사용하여 결과를 비교하였다. 평직으로 이루어진 적층판과 일방향 프리프레그로 이루어진 적층판 모두에서 접촉요소를 사용한 비선형 해석이 시험과 가장 일치하는 결과를 나타내었다. 일방향 프리프레그만을 사용한 적픙판 체결부에서와 달리 모든 층이 평직으로 이루어진 유리/에폭시 채결부의 경우 Tsai-Wu 파손식을 사용한 결과가 실험값과 더 잘 일치함을 알 수 있었다.

비접촉 원자간력 현미경의 탐침 캔틸레버 진동 특성 및 측정 성능 평가 (Vibration Characteristics and Performance of Cantilever for Non-contact Atomic Force Microscopy)

  • 박준기;권현규;홍성욱
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.495-502
    • /
    • 2004
  • This paper presents the vibration analysis and the performance evaluation of cantilevers with probing tips for non-contact scanning probe microscopy. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made for the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

비접촉 원자간력 현미경의 탐침 외팔보 진동특성에 따른 성능 평가 (Performance Evaluation of Non-contact Atomic Force Microscopy Due to Vibration Characteristics of Cantilever)

  • 박준기;권현규;홍성욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.263-268
    • /
    • 2003
  • This paper presents a result of performance evaluation fur non-contact scanning probe microscopy with respect to the vibration characteristics of cantilevers with tips. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made fur the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

  • PDF

인쇄회로기판의 통전검사를 위한 가변순응력을 갖는 프로브 시스템 (A variably compliable probe system for the in-circuit test of a PCB)

  • 심재홍;조형석;김성권
    • 제어로봇시스템학회논문지
    • /
    • 제3권3호
    • /
    • pp.323-331
    • /
    • 1997
  • A new probing mechanism and an active compliance control algorithm have been developed for the in-circuit test of a PCB( printed circuit board ). Commercially available robotic probing devices are incapable of controlling contact force generated through rigid probe contacts with a solder joint, at high speed. The uncontrollable excessive contact force often brungs about some defects on the surface of the solder joint, which is plastically deformable over some limited contact force. This force also makes unstable contact motions resulting in unreliable test data. To overcome these problems, we propose that a serially connected macro and micro device with active compliance provide the best potential for a safe and reliable in-circuit test. This paper describes the design characteristics, modeling and control scheme of the newly proposed device. The experimental results clearly show the effectiveness of the proposed system.

  • PDF

고효율 Solar Cell 제조를 위한 Firing 공정 조건의 최적화 (Optimization of the firing process condition for high efficiency solar cells on single-crystalline silicon)

  • 정세원;이성준;홍상진;한승수
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2006년도 추계학술발표회 초록집
    • /
    • pp.4-5
    • /
    • 2006
  • This paper represents modeling and optimization techniques for solar cell process on single-crystalline float zone (FZ) wafers with high efficiency; There were the four significant processes : i)emitter formation by diffusion, anti-reflection-coating (ARC) with silicon nitride using plasma-enhanced chemical vapor deposition (PECVD); iii)screen-printing for front and back metallization; and iv)contact formation by firing. In order to increase the performance of solar cells, the contact formation process is modeled and optimized. This paper utilizes the design of experiments (DOE) in contact formation to reduce process time, fabrication costs. The experiments were designed by using central composite design which is composed of $2^4$ factorial design augmented by 8 axial points with three center points. After contact formation process, the efficiency of the solar cell is modeled using neural networks. This model is used to analyse the characteristics of the process, and to optimize the process condition using genetic algorithms (GA). Finally, find optimal recipe for solar cell efficiency.

  • PDF

접촉면 처리 방식에 따른 석탑의 내진 특성 평가 (Seismic Behavior Characteristics of Stone Pagoda According to Contact Surface Types)

  • 김호수;김동관;원태호;전건우
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.41-50
    • /
    • 2019
  • The stone pagoda continued to be damaged by weathering and corrosion over time, and natural disasters such as earthquake are accelerating the destruction of cultural properties. Stone pagoda has discontinuous structure behavior and is very vulnerable to the seismic load acting in lateral direction. It is necessary to analyze various design variables as the contact surface characteristics play an important role in the dynamic behavior of stone pagodas. For this purpose, contact surface characteristics of stone pagoda can be classified according to surface roughness and filler type, and representative model is selected and structural modeling and analysis are performed using the discrete element method. Also, the seismic load according to the repetition period is calculated and the dynamic analysis is performed considering the discontinuous characteristics of the stone pagoda. Finally, the seismic behavior characteristics can be analyzed by the evaluation of stresses, displacements and structural safety.

면취 공정의 능동 제어를 위한 공압식 자동 강재 면취기와 센서 시스템의 제작 및 실험 (Fabrication and Experiment of Pneumatic Steel Plate Chamfering Machine and Sensor System for Active Control of Chamfering)

  • 나영민;이현석;김민효;박종규
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.80-86
    • /
    • 2020
  • With the exception of welding activities, it is forbidden to use electricity in shipyards, owing to safety concerns such as the possibility of fire, explosions, and short circuits. In this paper, an automatic chamfering machine using pneumatics is proposed for use in such environments. Customers specify their requirements and the machine derives the corresponding theoretical design conditions. The proposed machine was used to perform 3D modeling, and its suitability and performance were confirmed via cutting experiments of the manufactured device. Two types of sensors may be used in this system: contact and non-contact. In the case of the contact type, an end-stop switch that can recognize the end of the material is installed, and when the machine reaches the end of the material, the end-stop switch is operated to cut off the air pressure. In the non-contact type, four sensors were used: photonic, ultrasonic, metal detection, and encoder. The use of the four sensors was repeated 30 times, and the average error determined. Thus, the optimum sensor was identified.

SLA을 이용한 소수성 표면 제작 (Fabrication of Hydrophobic Surfaces with Stereolithography)

  • 홍성호
    • Tribology and Lubricants
    • /
    • 제37권1호
    • /
    • pp.1-6
    • /
    • 2021
  • This paper presents the experimental results of hydrophobic surfaces developed using a stereolithography-based additive-manufacturing technique. The additive manufacturing technique can be used to manufacture objects with complex geometries from computer-aided design data. Several additive manufacturing methods, such as selective laser sintering, fused deposition modeling, stereolithography apparatus (SLA), and inkjet-based system, have been developed. The SLA is a form of three-dimensional printing technology used to create prototypes, patterns, and production parts in successive layers through photochemical processes. Light causes chemical monomers and oligomers to cross-link together to form objects composed of polymers. Moreover, this method is economical for fabricating surfaces with high output resolution and quality. Here, we fabricate various surfaces using different shapes using an SLA. The surfaces with micro-patterns are fabricated for 10 cases, including the biomimetic surface. The fabricated surfaces with various micro-patterns are evaluated for hydrophobicity performance based on the static contact angle. The contact angle is measured three times for each case, and the averaged value is used. The results indicate that the arrangements in a staggered structure have a larger contact angle than those in a line when the same micro-pattern is applied. Moreover, the mimetic surfaces exhibit more hydrophobic characteristics than those of artificial micro-patterns.