• Title/Summary/Keyword: Contact joint

Search Result 548, Processing Time 0.03 seconds

Mobility in the Contact Joint of a Mechanism (접촉 조인트에서의 운동자유도)

  • Lee, Jang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.109-114
    • /
    • 2007
  • The mobility (degree of freedom) of mechanisms can be regarded as independent coordinate to define its position. This concept is essential for kinematics, and for designing mechanisms in the practical point of view. Gruebler's equation has been applied to estimate the mobility using number of links and joints of a mechanism. In practical case, there are many types of mechanisms, which transfer motion by direct contact between two links. However, no exact kinematic definition has existed for the joint that the contact takes place in a mechanism. In this paper, a new concept of contact joint is defined and modified Gruebler's equation is suggested to calculate mobility of a mechanism with the joint. This concept would be useful in mechanism design because it will be possible to manage many contact mechanisms with kinematic exactness.

A Study on the Relationship between Anterior Tooth Contact and Temporomandibular Joint Space (전치부 접촉과 측두하악 관절강폭과의 관계에 관한 연구)

  • Sang-Don Kim;Kyung-Soo Han;Min Shin
    • Journal of Oral Medicine and Pain
    • /
    • v.18 no.2
    • /
    • pp.43-53
    • /
    • 1993
  • The aim of this study was to investigate the relationship between the presence or absence of anterior tooth contact and the changes in temporomandibular joint space. The study sample consisted of 32symptom-free dental students and 79 craniomandibular disorders patients with unilateral joint dysfunction. The two groups were categorized into control group or experimental group, respectively. Recordings of the number and distribution of occlusal contacts were made by T-Scan system. Transcranial radiographs were taken with using of accurad-100 head positioner. Measured items in transcranial radiographs were anterior, superior, posterior joint space and relative condylar position to deepest position of glenoid folla. According to the presence or absence of anterior tooth contact, each group was subdivided and compared with each other with respect to TM joint space. Data were processed and tested with SPSS/PC + package. The results of the study showed that the joint space in control group were wider than those of experimental group and the difference of the width of joint space was more remarkable in subjects with anterior contact between control group and experimental group. However, in same group whether the presence of anterior tooth contact could hardly affect the difference of the width of joint space. And anterior tooth contact in grouip are more frequent than in experimental group.

  • PDF

Three-Dimensional Contact Dynamic Model of the Human Knee Joint During Walking

  • Mun, Joung-Hwan;Lee, Dae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.211-220
    • /
    • 2004
  • It is well known that the geometry of the articular surface has a major role in determining the position of articular contact and the lines of action for the contact forces. The contact force calculation of the knee joint under the effect of sliding and rolling is one of the most challenging issues in this field. We present a 3-D human knee joint model including sliding and rolling motions and major ligaments to calculate the lateral and medial condyle contact forces from the recovered total internal reaction force using inverse dynamic contact modeling and the Least-Square method. As results, it is believed that the patella, muscles and tendon affect a lot for the internal reaction forces at the initial heel contact stage. With increasing flexion angles during gait, the decreasing contact area is progressively shifted to the posterior direction on the tibia plateau. In addition, the medial side contact force is larger than the lateral side contact force in the knee joint during normal human walking. The total internal forces of the knee joint are reasonable compared to previous studies.

Evaluation of APR1400 Steam Generator Tube-to-Tubesheet Contact Area Residual Stresses

  • KIPTISIA, Wycliffe Kiprotich;NAMGUNG, Ihn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.18-27
    • /
    • 2019
  • The Advanced Power Reactor 1400 (APR1400) Steam Generator (SG) uses alloy 690 as a tube material and SA-508 Grade 3 Class 1 as a tubesheet material to form tube-to-tubesheet joint through hydraulic expansion process. In this paper, the residual stresses in the SG tube-to-tubesheet contact area was investigated by applying Model-Based System Engineering (MBSE) methodology and the V-model. The use of MBSE transform system description into diagrams which clearly describe the logical interaction between functions hence minimizes the risk of ambiguity. A theoretical and Finite Element Methodology (FEM) was used to assess and compare the residual stresses in the tube-to-tubesheet contact area. Additionally, the axial strength of the tube to tubesheet joint based on the pull-out force against the contact joint force was evaluated and recommended optimum autofrettage pressure to minimize residual stresses in the transition zone given. A single U-tube hole and tubesheet with ligament thickness was taken as a single cylinder and plane strain condition was assumed. An iterative method was used in FEM simulation to find the limit autofrettage pressure at which pull-out force and contact force are of the same magnitude. The joint contact force was estimated to be 20 times more than the pull-out force and the limit autofrettage pressure was estimated to be 141.85MPa.

Estimation of Contact Stress Distribution Factor in Bolt Joint with variable Fastening torque (체결력에 따른 볼트 결합부의 접촉응력분포계수 평가)

  • 김종규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.73-79
    • /
    • 1999
  • Most of mechanical structures are combined of substructures such as beams and/or plates. There are few systems with unibody structures but are many systems with united body structures. Generally the dynamic a nalysis of whole structures is performed under alternation load. In the structure design, the analysis of each bolted joint is more important than others for zero severity. This paper presents the analysis method of contact stress distribution factor in the bolted joint with variable fastening torque on joints in the structure. At first, a static vibration test was performed to find out a nominal stress of bolt jointed plates from the relationship between natural frequency and nominal stress. Then a contact stress was computed at contact point between bolt and plate in the structure. It is believed that the proposed method has promisiong implications for safer design with index of contact stress distribution factor and has merits for cost-down and saving time at the beginning of vehicle development.

  • PDF

Research on the tightening strategy of bolted flange for contact stiffness of joint surface

  • Zuo, Weiliang;Liu, Zhifeng;Zhao, Yongsheng;Niu, Nana;Zheng, Mingpo
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • During bolted flange assembly, the contact stiffness of some areas of the joint surface may be low due to the elastic interaction. In order to improve the contact stiffness at the lowest position of bolted flange, the correlation model between the initial bolt pre-tightening force and the contact stiffness of bolted flange is established in this paper. According to the stress distribution model of a single bolt, an assumption of uniform local contact stiffness of bolted flange is made. Moreover, the joint surface is divided into the compressive stress region and the elastic interaction region. Based on the fractal contact theory, the relationship model of contact stiffness and contact force of the joint surface is proposed. Considering the elastic interaction coefficient method, the correlation model of the initial bolt pre-tightening force and the contact stiffness of bolted flange is established. This model can be employed to reverse determine the tightening strategy of the bolt group according to working conditions. As a result, this provides a new idea for the digital design of tightening strategy of bolt group for contact stiffness of bolted flange. The tightening strategy of the bolted flange is optimized by using the correlation model of initial bolt pre-tightening force and the contact stiffness of bolted flange. After optimization, the average contact stiffness of the joint surface increased by 5%, and the minimum contact stiffness increased by 6%.

A Study on the Contact Characteristics of Metal Ring Joint Gaskets

  • Lee, Min-Young;Kim, Byung-Tak
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.25-31
    • /
    • 2016
  • Gaskets are usually used for the sealing of flange joints. The joint is usually composed of two flanges, a ring gasket and clamping bolts. The metal ring gasket is suitable for pipe flanges, pumps and valve joints in high temperature and high pressure environments. A very high surface stress is developed between a ring type joint gasket and the flange groove when the ring type joint is bolted up in a flange. The dimensions of flanges and ring joint gaskets for the pipe sizes that are in common use are specified in the ANSI codes. However, sometimes it is necessary to make a new design for the flange joint which is not specified in the codes, as the equipment is getting larger and larger in size. This paper presents the contact behavior of Class 600 ring joint gaskets with oval and octagonal cross sections. Five different sizes of gaskets are employed in the analysis, and one of them is newly designed on the basis of analysis results obtained from existing models. Three load steps are used to find the stress, stain and contact pressure etc., and to compare the contact characteristics among the models due to the bolt clamping force and the working surface pressure. ANSYS Workbench version15 is used to conduct the finite element analysis.

Measurement of Shear Contact Characteristics on Mechanical Joints (기계 조인트의 전단 컨택 특성 측정)

  • Lee, Chul-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1350-1353
    • /
    • 2007
  • An experimental method based on contact resonance is developed to extract the contact parameters of mechanical joints under various clamped conditions. Mechanical joint parameters of shear contact stiffness and damping were extracted for different physical joint parameters such as surface finish of the mating surfaces, the presence of lubrication, the effect of the clamping pressure, and shear load. It was found that the shear contact stiffness values decreased with increasing clamping load and increased with increasing shear loading. Contact damping ratio values were almost constant with clamping load, but decreased with increasing shear load. Moreover, rough surfaces exhibited the highest shear stiffness and contact damping compared to smooth surfaces.

  • PDF

The Kinematic Analysis and the Study of Muscle Activities during Backhand Drive in Squash (스쿼시 백핸드 드라이브 동작 시 운동학적 분석과 근활성도에 관한 연구)

  • Cho, Kyu-Kwon;Kim, You-Sin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.11-21
    • /
    • 2007
  • The purpose of this study was to examine the differences of kinematics and muscle activities depending on the changes of angle approaching balls during backhand drive in squash. The results are as follows. Stride time took the longest at AD2 and step lengths were the biggest at AD1 of left foot contact and right foot contact and AD2 of impact and follow-through. The center of gravity and the speed of racket head were the highest at AD3 and at AD2. Angle of shoulder joint were the biggest at AD1 of left foot contact, right foot contact and impact and AD3 of follow-through. Angle of elbow joint were the biggest at AD3 of left foot contact, right foot contact and follow-through and AD2 of impact. Angle of pelvis joint were the biggest at AD2 of left foot contact, AD1 of right foot contact and AD3 of impact and follow-through. Angle of knee joint were the biggest at AD2 of left foot contact, AD1 of right foot contact and AD3 of impact and follow-through. Angle of ankle joint were the biggest at AD1 of left foot contact and AD3 of right foot contact, impact and follow-through. According to the analysis results of triceps brachii, latissimus dorsi, brachioradialis muscle and flexor carpi ulnaris muscle activities were high at AD1 of all phases. Analysis results of vastus lateralis, vastus medialis, tibialis anterior and gastrocnemius medial muscle activities were high at AD2 of phase1 and phase3. Those of vastus lateralis, vastus medialis and tibialis anterior, gastrocnemius medial were high at AD3 of Phase 2 and AD1 of phase2.