• Title/Summary/Keyword: Contact force overhead contact lines

Search Result 13, Processing Time 0.027 seconds

Development of a Measurement System for Contact Force Analysis of Trolley Line (전기철도 전차선 접촉력 측정 및 분석시스템 개발)

  • Kim, In-Chol;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.82-87
    • /
    • 2010
  • A measurement system of contact force between overhead contact line and pantograph of train is developed which measures the contact force by using four sets of full-bridge strain gauges instead of load cells and accelerometers. The sensors are installed on the pan head of pantograph and the measured data from the sensors are transmitted to a server system in the train by way of wireless Lan. This configuration of the measuring system makes it easy to install on the trains without any alteration of train system. The measurement system is applied to KTX on the Kyungbu high speed line, and the measured contact force data shows good agreement with those measured by load cell and accelerometers. The waveform of the contact force between overhead contact line and pantograph contains essential information about their conditions. The proposed measurement system can probe any defects on overhead contact lines with train running at high speed, which will be a powerful solution for the maintenance of long-distance overhead contact lines.

Design of Active Pantograph Controller (능동 판토그래프 제어기 설계에 관한 연구)

  • Ko Tae-Hwan;Um Ju-Hwan;Eum Ki-Young;Shin Seung-Kwon
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.361-366
    • /
    • 2005
  • The high investment is necessary for the new high speed lines. So the KRRI has been interested in the possibility of upgrading the existing line in order to speed up the train in the conventional lines. The pantograph in train is indispensable in order to supply the electrification equipments with power in safe. The pantograph and the overhead wire form a dynamic coupled system and they affect each other through the contact force. Unfortunately, as the operational speed of a train increases, the vibration of the pantograph and the overhead wire also increases. This may lead to a zero contact force between the pantograph head and the overhead wire, which can results in the loss of contact, arching and abrasion. If the arching and spark happen between the pantograph and the overhead catenary system, the EMI(electro magnetic interface) and noises may occur. After all, the quality of current collection is deteriorated. This paper describes the dynamic response between the pantograph and catenary system by the numerical simulations and presents the LQ-servo controller to reduce the contact force variation

Analysis for the dynamic responses of pantograph-overhead contact line coupled system by using a condition monitoring system (상태감시시스템을 이용한 팬터그래프-전차선로 동특성 분석에 관한 연구)

  • Cho, Yong-Hyeon;Park, Young;Lee, Ki-Won;Kwon, Sam-Young;Park, Hyun-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.778-781
    • /
    • 2008
  • The aim of this paper is to analyze the dynamic responses of pantograph-overhead contact line coupled system by using a condition monitoring system. The monitoring items are strain, vertical displacement and acceleration of a contact wire. Both strain and vertical displacement in the contact wire depends on uplift force and train velocity. Measurement of acceleration shows that the passage of the pantograph gives an impact force to a hard point on a contact wire.

  • PDF

Simulation of the Dynamic Interactions between Catenary and Pantograph (전차선과 팬터그래프 사이의 동적 상호작용 시뮬레이션)

  • Kwon, Sam-Young;Kim, Gil-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.455-459
    • /
    • 1995
  • Catenary/pantograph system consists of overhead lines which have non-uniform elasticity and pantographs which move at high speed and give force to the lines, therefore happen to be failed in contacts between both from time to time. In this study, as the first step to develop a dynamic simulation program, the general theory is discussed for catenary/pantograph system and appropriate modelling. And comparison is conducted with the references after making a program which referred to the contact force equation algorithm. On this algorithm, the unknown contact force is computed by the equations which was induced as combining catenary and pantograph motion equations expressed in finite difference form. Another simulation program based on the assumed contact forces algorithm was developed. In this algorithm, numerical integraion of both the overhead line and pantograph equations, which without combining, are effected for two assumed values of contact force. The correct contact force is then obtained from these two sets of results by linear interpolation to satisfy the contact condition. Through the comparative review on the outputs from this program, it is verified that this algorithm is reliable.

  • PDF

Active Control of a High-Speed Pantograph using LQ-Servo Controller

  • Shin, Seung-Kwon;Song, Young-Soo;Eum, Ki-Young;Koo, Dong-Hoe
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1173-1177
    • /
    • 2004
  • The high investment is necessary for the new high speed lines. So the KRRI was interested in the possibility of upgrading the existing line in order to speed up the train in the conventional lines. The tilting train system has been developed because the reconstruction of railway for the cant compensation costs very high. The purpose of the tilting system is to compensate the centrifugal acceleration in order to reduce the lateral acceleration of the passenger at high speed on the curves.The pantograph of the tilting train is indispensable in order to supply the electrification equipments with power in safe. The dynamic interaction between the pantograph and the overhead catenary system causes the variation of the contact force and the contact force variation can cause contact losses, arcing and sparking. If the spark happens between the pantograph and the overhead catenary system, the EMI(electro magnetic interface) and noises may occur. After all, the quality of current collection is deteriorated. This paper deals with the active control of pantograph and presents the LQ-servo controller to reduce the contact force variation.

  • PDF

The analysis of the dynamic response between the pantograph and overhead wire (고속열차 주행을 위한 판토그래프와 가선시스템과의 동적응답 해석)

  • Shin Seung-Kwon;Song Yong-Soo;Mun Hyung-Scok;Eum Ki-Young;Kim Jae-Mun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1366-1371
    • /
    • 2004
  • The development of the European railway high speed network brings new problems related to the interoperability across the railways of different countries. The pantograph and the overhead wire form a dynamic coupled system and they affect each other through the contact force. Unfortunately, as the operational speed of a train increases, the vibration of the pantograph and the overhead wire also increases. This may lead to a zero contact force between the pantograph head and the overhead wire, which can results in the loss of contact, arching and abrasion. If the arching and spark happen between the pantograph and the overhead catenary system, the EMI(electro magnetic interface) and noises may occur. After an, the quality of current collection is deteriorated. This paper describes the dynamic response between the pantograph and catenary system by the numerical simulations and predicts the possibility of operating the high speed train in the conventional lines.

  • PDF

A Study on the Effects of Construction Tolerances on the Current Collection Performance for High Speed Catenary System (고속전차선로의 시공 허용오차가 집전성능에 미치는 영향에 관한 연구)

  • Kim, Tae-Hun;Seo, Ki-Bum;Park, Jae-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1782-1788
    • /
    • 2015
  • In this paper, analysis of the effects for construction tolerances on the current collection performance of high speed catenary system. The height of the contact wire is the geometrical position of the cantilever directly affects the current collection performance. Contact force when the height of the contact wire exceeds the construction tolerance were analyzed. As a result, the maximum contact force was analyzed to more than 350[N] that are recommended by EN50119. And when the geometrical position of the cantilever to exceeds the construction tolerance, the analysis results of uplift at the mast support points, it becomes 127[mm] that are recommended by UIC 799. If the construction tolerances exceeds the reference value, the current collection performance is deteriorated. Therefore, catenary system require high precision construction. In the future, there is a need for continuing research on the tolerance of catenary system in the actual operating state.

Analysis of the Major Design Parameters of a Pantograph-Railway Catenary System for Improving the Current Collection Quality (집전성능 향상을 위한 팬터그래프-전차선의 주요 설계 파라미터분석)

  • Cho, Yong Hyeon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Stiffness variations and wave propagation/reflection in railway catenaries are the primary sources of contact loss between a pantograph and a railway contact wire. This paper analyzes which design parameter is more important for 200km/h conventional rail and 300km/h high-speed rail, in order to effectively reduce the contact loss. For the high-speed rail, the wave propagation and reflection in the overhead contact lines are more influential than the stiffness variation over a span. When the high-speed rail needs to speed-up, it is necessary to develop higher strength contact wires in order to increase the wave propagation speed. In addition, the dropper clamp mass should be reduced in order to alleviate the wave reflection. However, it is noted that the increase in the tension to a messenger wire could deteriorate the current collection quality, which contrasts with expectations. For the 200km/h conventional rail, the stiffness variation over a span is more influential than the wave propagation and reflection. Therefore, shortening span length, increasing the tension in the contact wire and optimizing the location of the droppers are recommended for a smoother stiffness variation over the span.

A Study on Characteristics of Overhead Rigid Conductor System for Developing the High-speed System up to 250km/h (250km/h급 강체전차선로 시스템 개발을 위한 R-BAR 특성 고찰)

  • Bae, Sang-Joon;Jang, Kwang-Dong;Lee, Ki-Won;Park, Youn-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.492-497
    • /
    • 2015
  • An overhead rigid conductor system is mainly applied to the subway and recently studies on the rigid system have been conducted for applications such as tunnels of high-speed line and speed improvement of a conventional lines up to 250km/h. Power feeding performance which is the most important in a rigid system can be measured by contact force and characteristics of this contact force are related to the shape and material of the R-BAR. In this paper, we analyze the measurements of contact force, current heating temperature, impedance of a rigid conductor which was developed in Korea, after that we compare static characteristics of home and abroad rigid conductors which have various shapes and materials.

Overhead Rigid Conductor and Transition Structure for High-Speed (Over 250 km/h) I : Structural Design (250 km/h급 고속용 강체전차선 및 이행장치 I : 구조설계)

  • Kim, Bong-Suk;Won, Yong-Hee;Park, Seol-Hee;Bae, Sang-Joon;Jang, Kwang-Dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • With the increasing running speed of trains, new railway lines in metropolitan areas, and the rising demand for green transportations, the number of underground and tunnel sections are constantly becoming larger, and installations of overhead rigid conductor systems are becoming wider. However, domestic commercial products for overhead rigid conductors are limited to 120 km/h train speeds. In this study, to develop a high-speed (250 km/h) overhead rigid conductor, R-Bar (Rigid Bar), the electrical and mechanical stability was enhanced through the improvement of the cross sectional shape of the R-Bar; the transition structure was also designed for flexibility and natural frequency isolation. In addition, the evaluation of contact forces between a pantograph and the overhead rigid conductor system for 250 km/h train speeds was performed using dynamic analysis.