• Title/Summary/Keyword: Contact diameter

Search Result 494, Processing Time 0.031 seconds

Stratified steam explosion energetics

  • Jo, HangJin;Wang, Jun;Corradini, Michael
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.95-103
    • /
    • 2019
  • Vapor explosions can be classified in terms of modes of contact between the hot molten fuel and the coolant, since different contact modes may affect fuel-coolant mixing and subsequent vapor explosion energetics. It is generally accepted that most vapor explosion phenomena fall into three different modes of contact; fuel pouring into coolant, coolant injection into fuel and stratified fuel-coolant layers. In this study, we review previous stratified steam explosion experiments as well as recent experiments performed at the KTH in Sweden. While experiments with prototypic reactor materials are minimal, we do note that generally the energetics is limited for the stratified mode of contact. When the fuel mass involved in a steam explosion in a stratified geometry is compared to a pool geometry based on geometrical aspects, one can conclude that there is a very limited set of conditions (when melt jet diameter is small) under which a steam explosion is more energetic in a stratified geometry. However, under these limited conditions the absolute energetic explosion output would still be small because the total fuel mass involved would be limited.

Evaporation Characteristics of Paired Sessile Droplets on a Heated Substrate (가열된 표면에 고착된 한 쌍의 액적 증발 특성)

  • Hyung Ju Lee;Won Yeong Hwang;Jing Hao Jin;Chang Kyoung Choi;Seong Hyuk Lee
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.113-118
    • /
    • 2023
  • This study investigates the evaporation characteristics of paired sessile droplets on a heated substrate. In particular, the evaporation time and contact line behaviors were analyzed based on the droplet-to-droplet distance and substrate temperature. The contact line behavior and volume variations were visualized using the shadowgraph method. It was observed that the contact diameter and contact angle exhibited similar behavior for both single and paired droplets regardless of the droplet-to-droplet distance and substrate temperature. The paired droplets demonstrated a longer evaporation time than the single droplet due to the vapor accumulation between the droplets. Furthermore, the scaled lifetime, defined as the ratio of evaporation time between paired and single droplets, increased as the droplet-to-droplet distance decreased and decreased as the substrate temperature increased, attributed natural convection.

Development of an Automated Shaft Outside Diameter Measuring System (레이저 광학 장비와 컴퓨터를 이용한 자동측정 장치의 개발)

  • 최상민;이정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.197-199
    • /
    • 1986
  • To meet tight tolerance requirements of mass produced shafts which are subcomponents of automobile parts, an automated measuring system has been developed. The system comprises of a non-contact shaft diameter measuring instrument using laser, a feed mechanism of a step motor and ball screw and a personal computer. The system can determine pass-fail of the piece under test and also analyze data for statistical process control.

  • PDF

Parametric Study on the Joint Strength of Unidirectional and Fabric Hybrid Laminate (일방향-평직 복합재 혼합 적층판의 기계적 체결부 강도에 관한 인자연구)

  • 안현수;신소영;권진회;최진호;이상관;양승운
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.9-12
    • /
    • 2002
  • A parametric study has been conducted to investigate the effect of the geometry on the strength of an unidirectional and fabric hybrid laminated composite joint. Tests are conducted for the specimens with nine different edge-to-hole diameter or width-to-hole diameter ratios. For the finite element analysis, the characteristic length method is used, and the tests for determining the characteristic length are performed additionally. Nonlinear contact problem between the pin and laminate is modeled by the gap element in MSC/NASTRAN. Tsai-Wu failure criteria is applied to the stress on the characteristic curve. The finite element and experimental results shows good agreement in strength of composite joint. Results of the parametric study shows the effect of the geometry is remarkable in the specimens with width-to-hole diameter ratio less than 2.8 and edge-to-hole diameter ratio less than 1.4.

  • PDF

A Study on the Curing Bladder Shaping of Tire by Finite Element Method Using Contact Element (접촉요소를 이용한 유한요소법에 의한 타이어 가류브레더 팽창거동에 관한 연구)

  • Kim, Hang-Woo;Hwang, Gab-Woon;Cho, Kyu-Zong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.378-384
    • /
    • 1997
  • In curing process of tire, contact and slip occurs between green tire and curing bladder. The curing process is a critical step in the manufacture of tires. In this investigation, curing bladder shaping is examined using a finite element method. Specifically, a finite element model between the inner part of green tire and the outer part of curing bladder is generated using contact element and curing bladder is generated using incompressible element. Numerical analysis are performed on two different bladder types, different overall outer diameters of curing bladder and different heights of curing bladder. Numerical results show that contact pressure is increased by using toroidal type of curing bladder, increasing overall diameter and increasing height of curing bladder. To obtain natural equilibrium carcass line, there is a requirement in increasing contact pressure of the section between side and bead.

Effect of Contact Pressure on the Variations in Coefficients of Friction Between Porcine Knee Joint Cartilage and Co-Cr Alloy in a Repeat Pass Sliding Motion (반복 회전운동에서 코발트 크롬 합금과 미끄럼 접촉하는 돼지 무릎 관절연골의 접촉압력이 마찰계수 변화에 미치는 영향)

  • Lee, Kwon-Yong;Kim, Hwan;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.231-235
    • /
    • 2009
  • In this study, the influence of contact pressure on the variation in coefficients of friction between porcine knee joint cartilage and Co-Cr alloy in a repeat pass sliding motion was investigated. Flat-ended cartilage pin specimens(9 mm diameter, 8 mm long) were prepared from porcine(6 months old) knee joints by a drill-type punch. Friction tests were conducted by using a pin-on-disk type friction tester for an hour in PBS lubricated condition under the contact pressures of 0.5, 1 and 2 MPa with 50 mm distance per a cycle at ambient condition. As a result, coefficients of friction increased as the test duration increased for all contact pressures. The maximum coefficients of friction were 0.082, 0.06 and 0.098 for 0.5, 1, and 2 MPa, respectively. It showed that coefficients of friction of porcine knee joint cartilage against Co-Cr alloy depended on the level of contact pressure and related to squeeze film lubrication mechanism.

Application of Pulsed Chemical Vapor Deposited Tungsten Thin Film as a Nucleation Layer for Ultrahigh Aspect Ratio Tungsten-Plug Fill Process

  • Jang, Byeonghyeon;Kim, Soo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.486-492
    • /
    • 2016
  • Tungsten (W) thin film was deposited at $400^{\circ}C$ using pulsed chemical vapor deposition (pulsed CVD); film was then evaluated as a nucleation layer for W-plug deposition at the contact, with an ultrahigh aspect ratio of about 14~15 (top opening diameter: 240~250 nm, bottom diameter: 98~100 nm) for dynamic random access memory. The deposition stage of pulsed CVD has four steps resulting in one deposition cycle: (1) Reaction of $WF_6$ with $SiH_4$. (2) Inert gas purge. (3) $SiH_4$ exposure without $WF_6$ supply. (4) Inert gas purge while conventional CVD consists of the continuous reaction of $WF_6$ and $SiH_4$. The pulsed CVD-W film showed better conformality at contacts compared to that of conventional CVD-W nucleation layer. It was found that resistivities of films deposited by pulsed CVD were closely related with the phases formed and with the microstructure, as characterized by the grain size. A lower contact resistance was obtained by using pulsed CVD-W film as a nucleation layer compared to that of the conventional CVD-W nucleation layer, even though the former has a higher resistivity (${\sim}100{\mu}{\Omega}-cm$) than that of the latter (${\sim}25{\mu}{\Omega}-cm$). The plan-view scanning electron microscopy images after focused ion beam milling showed that the lower contact resistance of the pulsed CVD-W based W-plug fill scheme was mainly due to its better plug filling capability.

Evaluating Local Damages and Blast Resistance of RC Slabs Subjected to Contact Detonation (접촉 폭발 하중을 받는 RC 슬래브의 국부 손상 및 내폭 성능 평가)

  • Li, Ling;Lee, Jin Young;Min, Kyung Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.37-45
    • /
    • 2013
  • In this study, the resistance of various reinforced concrete (RC) slabs subjected to contact detonation was assessed. In order to enhance the blast resistance, fibers and external FRP sheets were reinforced to RC slabs. In the experiment, the $2,000{\times}1,000{\times}100mm$ sized RC slabs were fabricated using normal concrete (NC), steel fiber reinforced concrete (SFRC), polyvinyl alcohol fiber reinforced cementitious composite (PVA FRCC), and ultra-high performance cementitious composites (UHPCC). The damage levels of RC slabs subjected to contact detonation were evaluated by measuring the diameter and depth of crater, spall and breach. The experimental results were compared to the analyzed data using LS-DYNA program and three different prediction equations. The diameter and depth of crater, spall and breach were able to be predicted using LS-DYNA program approximately. The damage process of RC slabs under blast load was also well expressed. Three prediction equations suggested by other researchers had limitations to apply in terms of empirical approaches, therefore it needs further research to set more analytical considerations.

Measurements of Vibration and Pressure of an Oxidizer Pump for a 7-tonf Turbopump with a Modified Rear Floating Ring Seal (수정된 후방 플로팅 링 실을 적용한 7톤급 터보펌프 산화제 펌프의 진동 및 압력 측정)

  • Bae, JoonHwan;Kwak, Hyun-Duck;Choi, ChangHo;Choi, JongSoo
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.253-261
    • /
    • 2020
  • In this paper, we present an experimental investigation of the frequency characteristics and a visual inspection of an oxidizer pump with a modified rear-floating ring seal for a 7-tonf turbopump. An oxidizer pump typically operates at high rotational speeds and under cryogenic conditions. Despite its low hydraulic efficiency, the floating ring seal is frequently employed as a leakage control solution for turbomachinery because it effectively reduces abrasion by friction. When the oxidizer pump starts up, the floating ring moves excursively but locks up stably against the pump casing when the contact pressure increases. The compressive force on the floating ring depends on the hydrodynamic forces induced by the flow through the floating ring. This force is controlled by the nose position of the floating ring. Based on a validation test for a 7-tonf turbopump with two types of floating rings, we concluded that the floating ring with a small diameter nose can move easily with a low contact pressure in the cooling path. This leads to instability of the pressure fluctuation around the floating ring. In contrast, a floating ring with a large diameter nose has a high contact pressure and attaches strongly to the casing, which causes wear and frictional oxidation between the contact surfaces of the impeller and the floating ring.

Experimental study on the melting characteristics of pellet fuel for a waste plastic firing boiler (열가소성 폐플라스틱 연소 보일러용 펠렛 연료의 용융특성 실험)

  • Lee, Sung-Soo;Kim, Hyouck-Ju;Choi, Gyu-Sung
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.189-193
    • /
    • 2006
  • Experiments were performed to investigate the melting characteristics of pellet fuel made of LDPE and PP for a waste plastic firing boiler. Pellet fuel in a burner goes through conduction, convection and radiation transferred from flame in a furnace, and complex thermo/chemical processes. To figure out effects of ambient temperature and size of pellet on melting time pellets with a diameter from 5 mm to 40 mm were made to contact high temperature flue gas generated by a LNG firing pilot burner. Though melting processes of plastics include complicated heat transfer in a burner, parameters are limited to flue gas temperature and size for the simplicity in this study. From the results, melting times of LDPE and PP with a diameter of 5mm are 63 and 62 secs respectively at 600 $^{\circ}C$ while 677 and 583 sees respectively for a diameter of 40 mm. At $900^{\circ}C$, melting times of LDPE and PP with a diameter of 5mm are 21 and 24 sees respectively while 408 and 337 secs respectively for a diameter of 40 mm. It is found that melting time of LDPE is longer than that of PP, and melting times of both in general increase with diameter of pellets. It is thought melting is dependent mostly on melting temperature of plastic. It is expected melting times obtained from the study might be taken into account in designing a pellet firing burner for a boiler

  • PDF