• Title/Summary/Keyword: Contact diameter

Search Result 491, Processing Time 0.025 seconds

The diameter and base curve changes of soft contact Lens by protein deposition (단백질 침착에 의한 소프트콘택트렌즈의 직경 및 곡률반경 변화)

  • Park, Mi-Jung;Cho, Gyu-Tae;Shin, Sung-Hwan;Lee, Heum-Sook;Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.165-171
    • /
    • 2005
  • The aim of the study was to investigate the diameter and base curve changes of soft contact lens by protein deposition. Soft contact lenses were soaked in artificial tear or protein solution which had the same composition with tear for 2min, 10min, 30min, 1hr, 3hr, 6hr, 12hr, and 24hr. Diameter and base curve changes of soft contact lenses were examined by using the high speed camera(Fastcam ultima 1024). The longer the soaking time of soft contact lenses in the artificial tear, the diameter and base curve changes of soft contact lenses was more increased. In the case of soft contact lenses adsorbed only protein, the similar pattern was shown and the diameter and base curve were decreased. However, the influence of calcium ion was found to be less than that of protein. These results suggest that the tear protein causes the diameter and base curve decrease of soft contact lens, which might be related to the discomfort after soft contact lens wearing.

  • PDF

Characterization of Surfaces by Contact Angle Goniometry - II . Effect of Curvature on Contact Angle - (접촉각 측정에 의한 표면의 특성연구( II ) -섬유나 막대의 직경이 접촉각에 미치는 영향-)

  • Park Chung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.4 s.40
    • /
    • pp.437-445
    • /
    • 1991
  • The effect of diameter of rods or fibers on contact angle was studied in a vertical rod configuration. A contact angle measuring device described in the previous paper was optimized for the measurement of small-diameter fibers. It was shown that contact angles of water and hexadecane on nylon 6 monofilsments and glass rods increased with decrease of diameter below a critical diameter, which varied from one system to another. Beyond the critical value, contact angle of the liquid on the vertical glass rod reached to an equilibrium value which is equal to the unique value of the contact angle of the liquid drop on the horizontal glass plate.

  • PDF

A Study on the Correlation Between Nugget Diameter and Contact Diameter of Sheets by Electrode Force (點熔接 의 너깃지름 과 板間接觸지름 의 關聯性)

  • 송삼홍;김부동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.313-318
    • /
    • 1983
  • It is required in designing a spot welding to get in advance an estimated figure of nugget diameter. A method of estimating nugget diameter of low carbon steel sheets is suggested in tesms of utilizing elastic calculation in theory and of making a sectional observation of specimen of spot welding in experiment. The resultant findings are summarized as follows: 1) A contact diameter of sheet, 2.gamma.$_{o}$=d sub e/+(1.1)t, wheer de is the electrode tip diameter and t is the thickness of sheets. 2) The practical measurement of the nugget diameter reveals that $d_{n}$=(1.05) $d_{e}$+(0.9)t, and $d_{b}$ is less by 0.8-4.3% than 2.gamma.$_{o}$. 3) The more $d_{n}$ is as compared with t, the less the difference between a theoretical value and an experimental value is. 4) In the spot welding of thin steel sheets less than 3mm in thickness that are commonly used in sheet metal works, the contact diameter equals the nugget diameter. In this case, either the theoretical or experimental approach can be used for estimating the nugget diameter.meter.ter.r.

Experimental consideration for contact angle and force acting on bubble under nucleate pool boiling

  • Ji-Hwan Park;Il Seouk Park;Daeseong Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1269-1279
    • /
    • 2023
  • Pool boiling experiments are performed within an isolated bubble regime at inclination angles of 0° and 45°. When a bubble grows and departs from the heating surface, the pressure, buoyancy, and surface tension force play important roles. The curvature and base diameter are required to calculate the pressure force, the bubble volume is required to calculate the buoyancy force, and the contact angle and base diameter are required to calculate the surface tension force. The contact angle, base diameter, and volume of the bubbles are evaluated using images captured via a high-speed camera. The surface tension force equation proposed by Fritz is modified with the contact angles obtained in this study. When the bubble grows, the contact angle decreases slowly. However, when the bubble departs, the contact angle rapidly increases owing to necking. At an inclination angle of 0°, the contact angle is calculated as 82.88° at departure. Additionally, the advancing and receding contact angles are calculated as 70.25° and 82.28° at departure, respectively, at an inclination angle of 45°. The dynamic behaviors of bubble growth and departure are discussed with forces by pressure, buoyancy, and surface tension.

An effect of load on surface roughness in surface rolling (표면 로울링시 가압력이 표면 조도에 미치는 영향)

  • 강명순;김희남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.935-944
    • /
    • 1987
  • The surface rolling, one of the plastic working processes, provides good surface roughness with the reduction of diameter and the increase of surface hardness. In this study three Nachi 6000ZZ bearing were used for surface rolling on ductile cast iron. The results obtained are as follows; (1) The good surface roughness can be obtained with roller surface radius of curvature of 24mm after the 2nd rolling. (2) The surface roughness of ductile cast iron was 0.48.mu.mRmax by the contact pressure of 140kgf/mm$^{2}$ and surface hardness was Hv 395 with roller surface radius of curvature of 24mm after the 2nd rolling. (3) The reduction of specimen diameter of ductile cast iron were -12.8.mu.m due to rolling. (4) Within the diameter variation of -11.mu.m, surface roughness and surface hardness were increased, but at the range of exceeding -14.mu.m of the diameter variation the surface roughness became worse and the surface roughness became worse and the surface hardness was increased. (5) Dynamic contact area was about 25% to 30% of static contact area. The calculated contact pressure showed a good agreement with the experimental contact pressure.

Geometric Error Analysis of Contact Type Three Points Supporting Method for Inner Diameter Measurement (접촉식 3점지지법에 의한 내경측정의 기하학적 오차 해석)

  • Kim, Min-Ho;Kim, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.69-76
    • /
    • 2008
  • Inner diameter of bearing race is automatically measured by complete inspection system after grinding process. Contact type three points supporting method is widely applied to automatic inner diameter measurement because of its excellent stability. However, the geometric consideration regarding three points supporting method is not sufficient. In this study, the error equation from geometric error analysis of three points supporting method is found. The effect of factors in the error equation is also investigated. The error equation is linear for difference of diameter in sample and master on range of tolerance. An error becomes more and more larger, when the distance of two supporting balls or the diameter of supporting ball are increased. In the result, some considerations are proposed for measurement of inner diameter by the three points supporting method.

Analysis of the Room Temperature Fitting Process for Assembling the Part(Valve Seat and Cylinder Head) (Valve Seat/Cylinder Head 단품조립을 위한 상온압입공정 해석)

  • Bae, J.H.;Kim, M.S.;Woo, T.K.;Kim, T.J.;Ho, J.D.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.607-616
    • /
    • 2009
  • There are three sub-processes associated with the assembly of the valve seat and cylinder head; heat fitting, cold fitting, and shrink fitting. In the heat fitting stage, the cylinder head is heated to a specified temperature and then squeezed toward the outer diameter of the valve seat. The cold fitting process cools the valve seat and safely squeezes it toward the inner diameter of cylinder head. However, these methods increased the installations & running cost and curtailed productivity. To address these problems, we analyzed the shrink fitting process using the contact pressure caused by fitting interference between the outer diameter of the valve seat and the inner diameter of the cylinder head. In this study, a closed form equation for predicting the contact pressure and fitting load is proposed. For quality control of the assembly line, principal factors of the shrink fitting process influenced in contact pressure were simulated by the FEM. Actual loads measured in the field showed good agreement with the results obtained by theoretical and finite element analysis.

Diameter Measurement of Cylindrical Objects by Non-Contact Method (비접촉식 방법에 의한 원통형 물체의 지름 측정)

  • Im, Bok-Ryoung;Kim, Sok-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.177-181
    • /
    • 2005
  • Although there are many ways to measure the diameter of a cylindrical object, in this study, the diameter of a cylindrical objects were measured by the geometric optical method and interference-diffraction method which are two kinds of tipical non-contact methods. In geometric optical method, the curved laser beam is formed on the cylindrical surface by spreading the inclined laser beam using the cylindrical lens. The curve is captured by CCD camera and the diameter is calculated by geometry. And the interference and diffraction patterns of investigated cylindrical objects are analyzed in interference-diffraction method. In this study, the cylindrical objects, whose diameters are $0.05\;mm\;\~\;100.50\;mm$ were measured by the geometric optical method and interference-diffraction method. The results show that in each method, the relative errors of the measurement are within $2\%$ and $1\%$, respectively and these non-contact methods can be applied in the quick measurement of many objects.

Development of a Novel System for Measuring Sizing Degree Based on Contact Angle(I) - Development of a Novel Principle for Automatic Measurement of Contact Angle - (접촉각 측정 원리를 이용한 새로운 사이즈도 측정기 (제1보) -자동 접촉각 측정 원리의 개발 -)

  • 이찬용;김철환;최경민;박종열;권오철
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.43-52
    • /
    • 2003
  • The new principle to measure a sizing degree by a contact angle was developed using an automatic determination of the 3-end point coordinates of the water droplet on a sheet, which could diminish the operator's bias during measurement. A constant amount of water was first placed on a sample sheet by a water dispenser, and then an image of the liquid droplet was captured by a digital camera and then transmitted to a computer. The program measuring for contact angle extracted a liquid contour by Gaussian function combined with a 8-direction chain code. The Euclidean equation was applied to the binary image of the liquid contour in order to measure the diameter of the contour. Finally, the contact angle of the liquid was calculated by using the diameter and the top coordinates. In addition, a surface free energy of the sample sheet and an elapsed time taken up to the complete absorption into the sheet were simultaneously measured with the contact angle.

The Synaptic Organization of the Cat Striatum (고양이 선조체의 신경연접기구에 대한 형태학적 관찰)

  • Chung Jin-Woong;Choi Wol-Bong;Kwun Hung-Sik
    • Applied Microscopy
    • /
    • v.8 no.1
    • /
    • pp.53-66
    • /
    • 1978
  • An attempt has been made to discriminate the synapses in the striatum consisting caudate nucleus, putamen and fundus striati of the cat with emphasis on the characteristic structures of axon terminals and postsynaptic profiles. The differentiation is based on the size and shape of vesicle in the bouton terminal, and the symmetrical or asymmetrical thickening the pre- and postsynaptic membrane. Four types of synapses could be differentiated: Type I: the bontons with asymmetrical,synaptic thickenings contain round 45 nm diameter vesicles and contact cell soma, dendritic shafts and dendritic spines (74%). Type II : the boutons contain round 45nm diameter vesicles and are associated with symmetrical membrane thickenings. These synapses are formed on the soma and dendritic shafts (6%). Type III: the boutons with symmetrical membrane thickenings contain 50-60 nm diameter pleomorphic vesicles, and contact soma and dendritic shafts (18%). Type IV: the terminals contain flattened vesicles ($25{\times}45 nm$) and are associated with symmetrical membrane thickenings. These synapses are found in contact with soma and dendritic shafts. Additionally, the bouton en passant, which is expanded from myelinated or unmyelinated axons containing round vesicles (45nm diameter) contacts the dendritic shaft or dendritic spine with asymmetrical membrane thickenings. Two unusual types of synapses, axo-axonic and dendro-dendritic, are found occasionally.

  • PDF